| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr2 1196 simpr2l 1233 simpr2r 1234 simpr21 1261 simpr22 1262 simpr23 1263 wereu 5650 axdc4lem 10469 ioc0 13409 funcestrcsetclem9 18160 funcsetcestrclem9 18175 grpsubadd 19011 zntoslem 21517 mdsl3 32297 dvrcan5 33231 idlsrgmnd 33529 prv1n 35453 brofs2 36095 brifs2 36096 poimirlem28 37672 ftc1anc 37725 frinfm 37759 welb 37760 fdc 37769 unichnidl 38055 cvrnbtwn2 39293 islpln2a 39567 paddss1 39836 paddss2 39837 paddasslem17 39855 tendospass 41038 funcringcsetcALTV2lem9 48273 funcringcsetclem9ALTV 48296 ldepsprlem 48448 |
| Copyright terms: Public domain | W3C validator |