![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 713 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: simpr2 1194 simpr2l 1231 simpr2r 1232 simpr21 1259 simpr22 1260 simpr23 1261 wereu 5672 axdc4lem 10456 ioc0 13378 funcestrcsetclem9 18110 funcsetcestrclem9 18125 grpsubadd 18954 zntoslem 21423 psrbaglesuppOLD 21789 mdsl3 32004 dvrcan5 32823 idlsrgmnd 33070 prv1n 34888 brofs2 35521 brifs2 35522 poimirlem28 36983 ftc1anc 37036 frinfm 37070 welb 37071 fdc 37080 unichnidl 37366 cvrnbtwn2 38612 islpln2a 38886 paddss1 39155 paddss2 39156 paddasslem17 39174 tendospass 40357 funcringcsetcALTV2lem9 47138 funcringcsetclem9ALTV 47161 ldepsprlem 47318 |
Copyright terms: Public domain | W3C validator |