Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 712 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1169 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: simpr2 1193 simpr2l 1230 simpr2r 1231 simpr21 1258 simpr22 1259 simpr23 1260 wereu 5584 axdc4lem 10195 ioc0 13108 funcestrcsetclem9 17846 funcsetcestrclem9 17861 grpsubadd 18644 zntoslem 20745 psrbaglesuppOLD 21109 mdsl3 30657 dvrcan5 31469 idlsrgmnd 31638 prv1n 33372 brofs2 34358 brifs2 34359 poimirlem28 35784 ftc1anc 35837 frinfm 35872 welb 35873 fdc 35882 unichnidl 36168 cvrnbtwn2 37268 islpln2a 37541 paddss1 37810 paddss2 37811 paddasslem17 37829 tendospass 39012 funcringcsetcALTV2lem9 45554 funcringcsetclem9ALTV 45577 ldepsprlem 45765 |
Copyright terms: Public domain | W3C validator |