Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 715 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1168 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: simpr2 1192 simpr2l 1229 simpr2r 1230 simpr21 1257 simpr22 1258 simpr23 1259 wereu 5520 axdc4lem 9915 ioc0 12826 funcestrcsetclem9 17464 funcsetcestrclem9 17479 grpsubadd 18254 zntoslem 20324 psrbaglesuppOLD 20687 mdsl3 30198 dvrcan5 31016 idlsrgmnd 31180 prv1n 32909 brofs2 33928 brifs2 33929 poimirlem28 35365 ftc1anc 35418 frinfm 35453 welb 35454 fdc 35463 unichnidl 35749 cvrnbtwn2 36851 islpln2a 37124 paddss1 37393 paddss2 37394 paddasslem17 37412 tendospass 38595 funcringcsetcALTV2lem9 45035 funcringcsetclem9ALTV 45058 ldepsprlem 45246 |
Copyright terms: Public domain | W3C validator |