| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr2 1195 simpr2l 1232 simpr2r 1233 simpr21 1260 simpr22 1261 simpr23 1262 wereu 5661 axdc4lem 10477 ioc0 13416 funcestrcsetclem9 18163 funcsetcestrclem9 18178 grpsubadd 19015 zntoslem 21529 mdsl3 32263 dvrcan5 33179 idlsrgmnd 33477 prv1n 35395 brofs2 36037 brifs2 36038 poimirlem28 37614 ftc1anc 37667 frinfm 37701 welb 37702 fdc 37711 unichnidl 37997 cvrnbtwn2 39235 islpln2a 39509 paddss1 39778 paddss2 39779 paddasslem17 39797 tendospass 40980 funcringcsetcALTV2lem9 48172 funcringcsetclem9ALTV 48195 ldepsprlem 48347 |
| Copyright terms: Public domain | W3C validator |