| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr2 1196 simpr2l 1233 simpr2r 1234 simpr21 1261 simpr22 1262 simpr23 1263 wereu 5637 axdc4lem 10415 ioc0 13360 funcestrcsetclem9 18116 funcsetcestrclem9 18131 grpsubadd 18967 zntoslem 21473 mdsl3 32252 dvrcan5 33194 idlsrgmnd 33492 prv1n 35425 brofs2 36072 brifs2 36073 poimirlem28 37649 ftc1anc 37702 frinfm 37736 welb 37737 fdc 37746 unichnidl 38032 cvrnbtwn2 39275 islpln2a 39549 paddss1 39818 paddss2 39819 paddasslem17 39837 tendospass 41020 funcringcsetcALTV2lem9 48290 funcringcsetclem9ALTV 48313 ldepsprlem 48465 |
| Copyright terms: Public domain | W3C validator |