Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 714 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: simpr2 1195 simpr2l 1232 simpr2r 1233 simpr21 1260 simpr22 1261 simpr23 1262 wereu 5596 axdc4lem 10257 ioc0 13172 funcestrcsetclem9 17910 funcsetcestrclem9 17925 grpsubadd 18708 zntoslem 20809 psrbaglesuppOLD 21173 mdsl3 30723 dvrcan5 31535 idlsrgmnd 31704 prv1n 33438 brofs2 34424 brifs2 34425 poimirlem28 35849 ftc1anc 35902 frinfm 35937 welb 35938 fdc 35947 unichnidl 36233 cvrnbtwn2 37331 islpln2a 37604 paddss1 37873 paddss2 37874 paddasslem17 37892 tendospass 39075 funcringcsetcALTV2lem9 45660 funcringcsetclem9ALTV 45683 ldepsprlem 45871 |
Copyright terms: Public domain | W3C validator |