| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr2 1196 simpr2l 1233 simpr2r 1234 simpr21 1261 simpr22 1262 simpr23 1263 wereu 5610 axdc4lem 10346 ioc0 13292 funcestrcsetclem9 18054 funcsetcestrclem9 18069 grpsubadd 18941 zntoslem 21493 mdsl3 32296 dvrcan5 33203 idlsrgmnd 33479 prv1n 35475 brofs2 36121 brifs2 36122 poimirlem28 37698 ftc1anc 37751 frinfm 37785 welb 37786 fdc 37795 unichnidl 38081 cvrnbtwn2 39384 islpln2a 39657 paddss1 39926 paddss2 39927 paddasslem17 39945 tendospass 41128 funcringcsetcALTV2lem9 48408 funcringcsetclem9ALTV 48431 ldepsprlem 48583 |
| Copyright terms: Public domain | W3C validator |