| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr2 1196 simpr2l 1233 simpr2r 1234 simpr21 1261 simpr22 1262 simpr23 1263 wereu 5615 axdc4lem 10349 ioc0 13295 funcestrcsetclem9 18054 funcsetcestrclem9 18069 grpsubadd 18907 zntoslem 21463 mdsl3 32260 dvrcan5 33176 idlsrgmnd 33451 prv1n 35408 brofs2 36055 brifs2 36056 poimirlem28 37632 ftc1anc 37685 frinfm 37719 welb 37720 fdc 37729 unichnidl 38015 cvrnbtwn2 39258 islpln2a 39531 paddss1 39800 paddss2 39801 paddasslem17 39819 tendospass 41002 funcringcsetcALTV2lem9 48286 funcringcsetclem9ALTV 48309 ldepsprlem 48461 |
| Copyright terms: Public domain | W3C validator |