![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: simpr2 1194 simpr2l 1231 simpr2r 1232 simpr21 1259 simpr22 1260 simpr23 1261 wereu 5685 axdc4lem 10493 ioc0 13431 funcestrcsetclem9 18204 funcsetcestrclem9 18219 grpsubadd 19059 zntoslem 21593 mdsl3 32345 dvrcan5 33226 idlsrgmnd 33522 prv1n 35416 brofs2 36059 brifs2 36060 poimirlem28 37635 ftc1anc 37688 frinfm 37722 welb 37723 fdc 37732 unichnidl 38018 cvrnbtwn2 39257 islpln2a 39531 paddss1 39800 paddss2 39801 paddasslem17 39819 tendospass 41002 funcringcsetcALTV2lem9 48142 funcringcsetclem9ALTV 48165 ldepsprlem 48318 |
Copyright terms: Public domain | W3C validator |