| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr2 1196 simpr2l 1233 simpr2r 1234 simpr21 1261 simpr22 1262 simpr23 1263 wereu 5634 axdc4lem 10408 ioc0 13353 funcestrcsetclem9 18109 funcsetcestrclem9 18124 grpsubadd 18960 zntoslem 21466 mdsl3 32245 dvrcan5 33187 idlsrgmnd 33485 prv1n 35418 brofs2 36065 brifs2 36066 poimirlem28 37642 ftc1anc 37695 frinfm 37729 welb 37730 fdc 37739 unichnidl 38025 cvrnbtwn2 39268 islpln2a 39542 paddss1 39811 paddss2 39812 paddasslem17 39830 tendospass 41013 funcringcsetcALTV2lem9 48286 funcringcsetclem9ALTV 48309 ldepsprlem 48461 |
| Copyright terms: Public domain | W3C validator |