| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr2 1196 simpr2l 1233 simpr2r 1234 simpr21 1261 simpr22 1262 simpr23 1263 wereu 5627 axdc4lem 10384 ioc0 13329 funcestrcsetclem9 18089 funcsetcestrclem9 18104 grpsubadd 18942 zntoslem 21498 mdsl3 32295 dvrcan5 33203 idlsrgmnd 33478 prv1n 35411 brofs2 36058 brifs2 36059 poimirlem28 37635 ftc1anc 37688 frinfm 37722 welb 37723 fdc 37732 unichnidl 38018 cvrnbtwn2 39261 islpln2a 39535 paddss1 39804 paddss2 39805 paddasslem17 39823 tendospass 41006 funcringcsetcALTV2lem9 48279 funcringcsetclem9ALTV 48302 ldepsprlem 48454 |
| Copyright terms: Public domain | W3C validator |