![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr2 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrl 715 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: simpr2 1195 simpr2l 1232 simpr2r 1233 simpr21 1260 simpr22 1261 simpr23 1262 wereu 5696 axdc4lem 10524 ioc0 13454 funcestrcsetclem9 18217 funcsetcestrclem9 18232 grpsubadd 19068 zntoslem 21598 mdsl3 32348 dvrcan5 33216 idlsrgmnd 33507 prv1n 35399 brofs2 36041 brifs2 36042 poimirlem28 37608 ftc1anc 37661 frinfm 37695 welb 37696 fdc 37705 unichnidl 37991 cvrnbtwn2 39231 islpln2a 39505 paddss1 39774 paddss2 39775 paddasslem17 39793 tendospass 40976 funcringcsetcALTV2lem9 48021 funcringcsetclem9ALTV 48044 ldepsprlem 48201 |
Copyright terms: Public domain | W3C validator |