Proof of Theorem islpln2a
Step | Hyp | Ref
| Expression |
1 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑄 = 𝑅 → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑅)) |
2 | | islpln2a.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
3 | | islpln2a.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
4 | 2, 3 | hlatjidm 37383 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴) → (𝑅 ∨ 𝑅) = 𝑅) |
5 | 4 | 3ad2antr2 1188 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ∨ 𝑅) = 𝑅) |
6 | 1, 5 | sylan9eqr 2800 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 ∨ 𝑅) = 𝑅) |
7 | 6 | oveq1d 7290 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑅 ∨ 𝑆)) |
8 | | simpll 764 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL) |
9 | | simplr2 1215 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → 𝑅 ∈ 𝐴) |
10 | | simplr3 1216 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → 𝑆 ∈ 𝐴) |
11 | | islpln2a.p |
. . . . . . . 8
⊢ 𝑃 = (LPlanes‘𝐾) |
12 | 2, 3, 11 | 2atnelpln 37558 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → ¬ (𝑅 ∨ 𝑆) ∈ 𝑃) |
13 | 8, 9, 10, 12 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → ¬ (𝑅 ∨ 𝑆) ∈ 𝑃) |
14 | 7, 13 | eqneltrd 2858 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) |
15 | 14 | ex 413 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 = 𝑅 → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
16 | 15 | necon2ad 2958 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 → 𝑄 ≠ 𝑅)) |
17 | | hllat 37377 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
18 | 17 | adantr 481 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
19 | | simpr3 1195 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
21 | 20, 3 | atbase 37303 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
22 | 19, 21 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
23 | 20, 2, 3 | hlatjcl 37381 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
24 | 23 | 3adant3r3 1183 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
25 | | islpln2a.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
26 | 20, 25, 2 | latleeqj2 18170 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → (𝑆 ≤ (𝑄 ∨ 𝑅) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅))) |
27 | 18, 22, 24, 26 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ≤ (𝑄 ∨ 𝑅) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅))) |
28 | 2, 3, 11 | 2atnelpln 37558 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
29 | 28 | 3adant3r3 1183 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
30 | | eleq1 2826 |
. . . . . . 7
⊢ (((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ (𝑄 ∨ 𝑅) ∈ 𝑃)) |
31 | 30 | notbid 318 |
. . . . . 6
⊢ (((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅) → (¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ ¬ (𝑄 ∨ 𝑅) ∈ 𝑃)) |
32 | 29, 31 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅) → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
33 | 27, 32 | sylbid 239 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ≤ (𝑄 ∨ 𝑅) → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
34 | 33 | con2d 134 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 → ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
35 | 16, 34 | jcad 513 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 → (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
36 | 25, 2, 3, 11 | lplni2 37551 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) |
37 | 36 | 3expia 1120 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
38 | 35, 37 | impbid 211 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |