Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln2a Structured version   Visualization version   GIF version

Theorem islpln2a 39505
Description: The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012.)
Hypotheses
Ref Expression
islpln2a.l = (le‘𝐾)
islpln2a.j = (join‘𝐾)
islpln2a.a 𝐴 = (Atoms‘𝐾)
islpln2a.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln2a ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))

Proof of Theorem islpln2a
StepHypRef Expression
1 oveq1 7455 . . . . . . . 8 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
2 islpln2a.j . . . . . . . . . 10 = (join‘𝐾)
3 islpln2a.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
42, 3hlatjidm 39325 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
543ad2antr2 1189 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑅 𝑅) = 𝑅)
61, 5sylan9eqr 2802 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
76oveq1d 7463 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ((𝑄 𝑅) 𝑆) = (𝑅 𝑆))
8 simpll 766 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL)
9 simplr2 1216 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝑅𝐴)
10 simplr3 1217 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝑆𝐴)
11 islpln2a.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
122, 3, 112atnelpln 39501 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → ¬ (𝑅 𝑆) ∈ 𝑃)
138, 9, 10, 12syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ¬ (𝑅 𝑆) ∈ 𝑃)
147, 13eqneltrd 2864 . . . . 5 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃)
1514ex 412 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑄 = 𝑅 → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
1615necon2ad 2961 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃𝑄𝑅))
17 hllat 39319 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817adantr 480 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
19 simpr3 1196 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
20 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 3atbase 39245 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆 ∈ (Base‘𝐾))
2320, 2, 3hlatjcl 39323 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
24233adant3r3 1184 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
25 islpln2a.l . . . . . . 7 = (le‘𝐾)
2620, 25, 2latleeqj2 18522 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑆 (𝑄 𝑅) ↔ ((𝑄 𝑅) 𝑆) = (𝑄 𝑅)))
2718, 22, 24, 26syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) ↔ ((𝑄 𝑅) 𝑆) = (𝑄 𝑅)))
282, 3, 112atnelpln 39501 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ¬ (𝑄 𝑅) ∈ 𝑃)
29283adant3r3 1184 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ¬ (𝑄 𝑅) ∈ 𝑃)
30 eleq1 2832 . . . . . . 7 (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄 𝑅) ∈ 𝑃))
3130notbid 318 . . . . . 6 (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → (¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ¬ (𝑄 𝑅) ∈ 𝑃))
3229, 31syl5ibrcom 247 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3327, 32sylbid 240 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3433con2d 134 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 → ¬ 𝑆 (𝑄 𝑅)))
3516, 34jcad 512 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 → (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
3625, 2, 3, 11lplni2 39494 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
37363expia 1121 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ((𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3835, 37impbid 212 1 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  HLchlt 39306  LPlanesclpl 39449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456
This theorem is referenced by:  islpln2ah  39506  2atmat  39518  dalawlem13  39840  cdleme16d  40238
  Copyright terms: Public domain W3C validator