Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln2a Structured version   Visualization version   GIF version

Theorem islpln2a 39153
Description: The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012.)
Hypotheses
Ref Expression
islpln2a.l = (le‘𝐾)
islpln2a.j = (join‘𝐾)
islpln2a.a 𝐴 = (Atoms‘𝐾)
islpln2a.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln2a ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))

Proof of Theorem islpln2a
StepHypRef Expression
1 oveq1 7426 . . . . . . . 8 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
2 islpln2a.j . . . . . . . . . 10 = (join‘𝐾)
3 islpln2a.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
42, 3hlatjidm 38973 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
543ad2antr2 1186 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑅 𝑅) = 𝑅)
61, 5sylan9eqr 2787 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
76oveq1d 7434 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ((𝑄 𝑅) 𝑆) = (𝑅 𝑆))
8 simpll 765 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL)
9 simplr2 1213 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝑅𝐴)
10 simplr3 1214 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝑆𝐴)
11 islpln2a.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
122, 3, 112atnelpln 39149 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → ¬ (𝑅 𝑆) ∈ 𝑃)
138, 9, 10, 12syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ¬ (𝑅 𝑆) ∈ 𝑃)
147, 13eqneltrd 2845 . . . . 5 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃)
1514ex 411 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑄 = 𝑅 → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
1615necon2ad 2944 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃𝑄𝑅))
17 hllat 38967 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817adantr 479 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
19 simpr3 1193 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
20 eqid 2725 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 3atbase 38893 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆 ∈ (Base‘𝐾))
2320, 2, 3hlatjcl 38971 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
24233adant3r3 1181 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
25 islpln2a.l . . . . . . 7 = (le‘𝐾)
2620, 25, 2latleeqj2 18452 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑆 (𝑄 𝑅) ↔ ((𝑄 𝑅) 𝑆) = (𝑄 𝑅)))
2718, 22, 24, 26syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) ↔ ((𝑄 𝑅) 𝑆) = (𝑄 𝑅)))
282, 3, 112atnelpln 39149 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ¬ (𝑄 𝑅) ∈ 𝑃)
29283adant3r3 1181 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ¬ (𝑄 𝑅) ∈ 𝑃)
30 eleq1 2813 . . . . . . 7 (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄 𝑅) ∈ 𝑃))
3130notbid 317 . . . . . 6 (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → (¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ¬ (𝑄 𝑅) ∈ 𝑃))
3229, 31syl5ibrcom 246 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3327, 32sylbid 239 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3433con2d 134 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 → ¬ 𝑆 (𝑄 𝑅)))
3516, 34jcad 511 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 → (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
3625, 2, 3, 11lplni2 39142 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
37363expia 1118 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ((𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3835, 37impbid 211 1 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17188  lecple 17248  joincjn 18311  Latclat 18431  Atomscatm 38867  HLchlt 38954  LPlanesclpl 39097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18295  df-poset 18313  df-plt 18330  df-lub 18346  df-glb 18347  df-join 18348  df-meet 18349  df-p0 18425  df-lat 18432  df-clat 18499  df-oposet 38780  df-ol 38782  df-oml 38783  df-covers 38870  df-ats 38871  df-atl 38902  df-cvlat 38926  df-hlat 38955  df-llines 39103  df-lplanes 39104
This theorem is referenced by:  islpln2ah  39154  2atmat  39166  dalawlem13  39488  cdleme16d  39886
  Copyright terms: Public domain W3C validator