Proof of Theorem islpln2a
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑄 = 𝑅 → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑅)) |
| 2 | | islpln2a.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
| 3 | | islpln2a.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
| 4 | 2, 3 | hlatjidm 39392 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴) → (𝑅 ∨ 𝑅) = 𝑅) |
| 5 | 4 | 3ad2antr2 1190 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ∨ 𝑅) = 𝑅) |
| 6 | 1, 5 | sylan9eqr 2793 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 ∨ 𝑅) = 𝑅) |
| 7 | 6 | oveq1d 7425 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑅 ∨ 𝑆)) |
| 8 | | simpll 766 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL) |
| 9 | | simplr2 1217 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → 𝑅 ∈ 𝐴) |
| 10 | | simplr3 1218 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → 𝑆 ∈ 𝐴) |
| 11 | | islpln2a.p |
. . . . . . . 8
⊢ 𝑃 = (LPlanes‘𝐾) |
| 12 | 2, 3, 11 | 2atnelpln 39568 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → ¬ (𝑅 ∨ 𝑆) ∈ 𝑃) |
| 13 | 8, 9, 10, 12 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → ¬ (𝑅 ∨ 𝑆) ∈ 𝑃) |
| 14 | 7, 13 | eqneltrd 2855 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) |
| 15 | 14 | ex 412 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 = 𝑅 → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
| 16 | 15 | necon2ad 2948 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 → 𝑄 ≠ 𝑅)) |
| 17 | | hllat 39386 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 19 | | simpr3 1197 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
| 20 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 21 | 20, 3 | atbase 39312 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
| 22 | 19, 21 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
| 23 | 20, 2, 3 | hlatjcl 39390 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 24 | 23 | 3adant3r3 1185 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 25 | | islpln2a.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 26 | 20, 25, 2 | latleeqj2 18467 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → (𝑆 ≤ (𝑄 ∨ 𝑅) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅))) |
| 27 | 18, 22, 24, 26 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ≤ (𝑄 ∨ 𝑅) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅))) |
| 28 | 2, 3, 11 | 2atnelpln 39568 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
| 29 | 28 | 3adant3r3 1185 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ¬ (𝑄 ∨ 𝑅) ∈ 𝑃) |
| 30 | | eleq1 2823 |
. . . . . . 7
⊢ (((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ (𝑄 ∨ 𝑅) ∈ 𝑃)) |
| 31 | 30 | notbid 318 |
. . . . . 6
⊢ (((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅) → (¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ ¬ (𝑄 ∨ 𝑅) ∈ 𝑃)) |
| 32 | 29, 31 | syl5ibrcom 247 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) = (𝑄 ∨ 𝑅) → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
| 33 | 27, 32 | sylbid 240 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ≤ (𝑄 ∨ 𝑅) → ¬ ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
| 34 | 33 | con2d 134 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 → ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
| 35 | 16, 34 | jcad 512 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 → (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
| 36 | 25, 2, 3, 11 | lplni2 39561 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃) |
| 37 | 36 | 3expia 1121 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃)) |
| 38 | 35, 37 | impbid 212 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (((𝑄 ∨ 𝑅) ∨ 𝑆) ∈ 𝑃 ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |