MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zntoslem Structured version   Visualization version   GIF version

Theorem zntoslem 21412
Description: Lemma for zntos 21413. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
zntoslem (𝑁 ∈ ℕ0𝑌 ∈ Toset)

Proof of Theorem zntoslem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21fvexi 6895 . . . 4 𝑌 ∈ V
32a1i 11 . . 3 (𝑁 ∈ ℕ0𝑌 ∈ V)
4 znleval.x . . . 4 𝑋 = (Base‘𝑌)
54a1i 11 . . 3 (𝑁 ∈ ℕ0𝑋 = (Base‘𝑌))
6 znle2.l . . . 4 = (le‘𝑌)
76a1i 11 . . 3 (𝑁 ∈ ℕ0 = (le‘𝑌))
8 znle2.f . . . . . . . . . 10 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
9 znle2.w . . . . . . . . . 10 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
101, 4, 8, 9znf1o 21407 . . . . . . . . 9 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
11 f1ocnv 6835 . . . . . . . . 9 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
1210, 11syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0𝐹:𝑋1-1-onto𝑊)
13 f1of 6823 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑊𝐹:𝑋𝑊)
1412, 13syl 17 . . . . . . 7 (𝑁 ∈ ℕ0𝐹:𝑋𝑊)
15 sseq1 3999 . . . . . . . . . 10 (ℤ = if(𝑁 = 0, ℤ, (0..^𝑁)) → (ℤ ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
16 sseq1 3999 . . . . . . . . . 10 ((0..^𝑁) = if(𝑁 = 0, ℤ, (0..^𝑁)) → ((0..^𝑁) ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
17 ssid 3996 . . . . . . . . . 10 ℤ ⊆ ℤ
18 fzossz 13648 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
1915, 16, 17, 18keephyp 4591 . . . . . . . . 9 if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ
209, 19eqsstri 4008 . . . . . . . 8 𝑊 ⊆ ℤ
21 zssre 12561 . . . . . . . 8 ℤ ⊆ ℝ
2220, 21sstri 3983 . . . . . . 7 𝑊 ⊆ ℝ
23 fss 6724 . . . . . . 7 ((𝐹:𝑋𝑊𝑊 ⊆ ℝ) → 𝐹:𝑋⟶ℝ)
2414, 22, 23sylancl 585 . . . . . 6 (𝑁 ∈ ℕ0𝐹:𝑋⟶ℝ)
2524ffvelcdmda 7076 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
2625leidd 11776 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝐹𝑥) ≤ (𝐹𝑥))
271, 8, 9, 6, 4znleval2 21411 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑥𝑋) → (𝑥 𝑥 ↔ (𝐹𝑥) ≤ (𝐹𝑥)))
28273anidm23 1418 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝑥 𝑥 ↔ (𝐹𝑥) ≤ (𝐹𝑥)))
2926, 28mpbird 257 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → 𝑥 𝑥)
301, 8, 9, 6, 4znleval2 21411 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
311, 8, 9, 6, 4znleval2 21411 . . . . . . 7 ((𝑁 ∈ ℕ0𝑦𝑋𝑥𝑋) → (𝑦 𝑥 ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
32313com23 1123 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑦 𝑥 ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
3330, 32anbi12d 630 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑥))))
34253adant3 1129 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
3524ffvelcdmda 7076 . . . . . . 7 ((𝑁 ∈ ℕ0𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
36353adant2 1128 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
3734, 36letri3d 11352 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑥))))
38 f1of1 6822 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑊𝐹:𝑋1-1𝑊)
3912, 38syl 17 . . . . . . 7 (𝑁 ∈ ℕ0𝐹:𝑋1-1𝑊)
40 f1fveq 7253 . . . . . . 7 ((𝐹:𝑋1-1𝑊 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4139, 40sylan 579 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
42413impb 1112 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4333, 37, 423bitr2d 307 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ 𝑥 = 𝑦))
4443biimpd 228 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
45253ad2antr1 1185 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑥) ∈ ℝ)
46353ad2antr2 1186 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑦) ∈ ℝ)
4724ffvelcdmda 7076 . . . . . 6 ((𝑁 ∈ ℕ0𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
48473ad2antr3 1187 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑧) ∈ ℝ)
49 letr 11304 . . . . 5 (((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧)) → (𝐹𝑥) ≤ (𝐹𝑧)))
5045, 46, 48, 49syl3anc 1368 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧)) → (𝐹𝑥) ≤ (𝐹𝑧)))
51303adant3r3 1181 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
521, 8, 9, 6, 4znleval2 21411 . . . . . 6 ((𝑁 ∈ ℕ0𝑦𝑋𝑧𝑋) → (𝑦 𝑧 ↔ (𝐹𝑦) ≤ (𝐹𝑧)))
53523adant3r1 1179 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑦 𝑧 ↔ (𝐹𝑦) ≤ (𝐹𝑧)))
5451, 53anbi12d 630 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 𝑦𝑦 𝑧) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧))))
551, 8, 9, 6, 4znleval2 21411 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑧𝑋) → (𝑥 𝑧 ↔ (𝐹𝑥) ≤ (𝐹𝑧)))
56553adant3r2 1180 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 𝑧 ↔ (𝐹𝑥) ≤ (𝐹𝑧)))
5750, 54, 563imtr4d 294 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
583, 5, 7, 29, 44, 57isposd 18275 . 2 (𝑁 ∈ ℕ0𝑌 ∈ Poset)
5934, 36letrid 11362 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ∨ (𝐹𝑦) ≤ (𝐹𝑥)))
6030, 32orbi12d 915 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∨ (𝐹𝑦) ≤ (𝐹𝑥))))
6159, 60mpbird 257 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑥 𝑦𝑦 𝑥))
62613expb 1117 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 𝑦𝑦 𝑥))
6362ralrimivva 3192 . 2 (𝑁 ∈ ℕ0 → ∀𝑥𝑋𝑦𝑋 (𝑥 𝑦𝑦 𝑥))
644, 6istos 18370 . 2 (𝑌 ∈ Toset ↔ (𝑌 ∈ Poset ∧ ∀𝑥𝑋𝑦𝑋 (𝑥 𝑦𝑦 𝑥)))
6558, 63, 64sylanbrc 582 1 (𝑁 ∈ ℕ0𝑌 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  wss 3940  ifcif 4520   class class class wbr 5138  ccnv 5665  cres 5668  wf 6529  1-1wf1 6530  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  cr 11104  0cc0 11105  cle 11245  0cn0 12468  cz 12554  ..^cfzo 13623  Basecbs 17140  lecple 17200  Posetcpo 18259  Tosetctos 18368  ℤRHomczrh 21349  ℤ/nczn 21352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-ec 8700  df-qs 8704  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-dvds 16194  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-imas 17450  df-qus 17451  df-poset 18265  df-toset 18369  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-mhm 18700  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18983  df-subg 19035  df-nsg 19036  df-eqg 19037  df-ghm 19124  df-cmn 19687  df-abl 19688  df-mgp 20025  df-rng 20043  df-ur 20072  df-ring 20125  df-cring 20126  df-oppr 20221  df-dvdsr 20244  df-rhm 20359  df-subrng 20431  df-subrg 20456  df-lmod 20693  df-lss 20764  df-lsp 20804  df-sra 21006  df-rgmod 21007  df-lidl 21052  df-rsp 21053  df-2idl 21092  df-cnfld 21224  df-zring 21297  df-zrh 21353  df-zn 21356
This theorem is referenced by:  zntos  21413
  Copyright terms: Public domain W3C validator