MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zntoslem Structured version   Visualization version   GIF version

Theorem zntoslem 20703
Description: Lemma for zntos 20704. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
zntoslem (𝑁 ∈ ℕ0𝑌 ∈ Toset)

Proof of Theorem zntoslem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21fvexi 6684 . . . 4 𝑌 ∈ V
32a1i 11 . . 3 (𝑁 ∈ ℕ0𝑌 ∈ V)
4 znleval.x . . . 4 𝑋 = (Base‘𝑌)
54a1i 11 . . 3 (𝑁 ∈ ℕ0𝑋 = (Base‘𝑌))
6 znle2.l . . . 4 = (le‘𝑌)
76a1i 11 . . 3 (𝑁 ∈ ℕ0 = (le‘𝑌))
8 znle2.f . . . . . . . . . 10 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
9 znle2.w . . . . . . . . . 10 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
101, 4, 8, 9znf1o 20698 . . . . . . . . 9 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
11 f1ocnv 6627 . . . . . . . . 9 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
1210, 11syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0𝐹:𝑋1-1-onto𝑊)
13 f1of 6615 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑊𝐹:𝑋𝑊)
1412, 13syl 17 . . . . . . 7 (𝑁 ∈ ℕ0𝐹:𝑋𝑊)
15 sseq1 3992 . . . . . . . . . 10 (ℤ = if(𝑁 = 0, ℤ, (0..^𝑁)) → (ℤ ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
16 sseq1 3992 . . . . . . . . . 10 ((0..^𝑁) = if(𝑁 = 0, ℤ, (0..^𝑁)) → ((0..^𝑁) ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
17 ssid 3989 . . . . . . . . . 10 ℤ ⊆ ℤ
18 elfzoelz 13039 . . . . . . . . . . 11 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
1918ssriv 3971 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
2015, 16, 17, 19keephyp 4536 . . . . . . . . 9 if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ
219, 20eqsstri 4001 . . . . . . . 8 𝑊 ⊆ ℤ
22 zssre 11989 . . . . . . . 8 ℤ ⊆ ℝ
2321, 22sstri 3976 . . . . . . 7 𝑊 ⊆ ℝ
24 fss 6527 . . . . . . 7 ((𝐹:𝑋𝑊𝑊 ⊆ ℝ) → 𝐹:𝑋⟶ℝ)
2514, 23, 24sylancl 588 . . . . . 6 (𝑁 ∈ ℕ0𝐹:𝑋⟶ℝ)
2625ffvelrnda 6851 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
2726leidd 11206 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝐹𝑥) ≤ (𝐹𝑥))
281, 8, 9, 6, 4znleval2 20702 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑥𝑋) → (𝑥 𝑥 ↔ (𝐹𝑥) ≤ (𝐹𝑥)))
29283anidm23 1417 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝑥 𝑥 ↔ (𝐹𝑥) ≤ (𝐹𝑥)))
3027, 29mpbird 259 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → 𝑥 𝑥)
311, 8, 9, 6, 4znleval2 20702 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
321, 8, 9, 6, 4znleval2 20702 . . . . . . 7 ((𝑁 ∈ ℕ0𝑦𝑋𝑥𝑋) → (𝑦 𝑥 ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
33323com23 1122 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑦 𝑥 ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
3431, 33anbi12d 632 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑥))))
35263adant3 1128 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
3625ffvelrnda 6851 . . . . . . 7 ((𝑁 ∈ ℕ0𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
37363adant2 1127 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
3835, 37letri3d 10782 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑥))))
39 f1of1 6614 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑊𝐹:𝑋1-1𝑊)
4012, 39syl 17 . . . . . . 7 (𝑁 ∈ ℕ0𝐹:𝑋1-1𝑊)
41 f1fveq 7020 . . . . . . 7 ((𝐹:𝑋1-1𝑊 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4240, 41sylan 582 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
43423impb 1111 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4434, 38, 433bitr2d 309 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ 𝑥 = 𝑦))
4544biimpd 231 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
46263ad2antr1 1184 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑥) ∈ ℝ)
47363ad2antr2 1185 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑦) ∈ ℝ)
4825ffvelrnda 6851 . . . . . 6 ((𝑁 ∈ ℕ0𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
49483ad2antr3 1186 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑧) ∈ ℝ)
50 letr 10734 . . . . 5 (((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧)) → (𝐹𝑥) ≤ (𝐹𝑧)))
5146, 47, 49, 50syl3anc 1367 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧)) → (𝐹𝑥) ≤ (𝐹𝑧)))
52313adant3r3 1180 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
531, 8, 9, 6, 4znleval2 20702 . . . . . 6 ((𝑁 ∈ ℕ0𝑦𝑋𝑧𝑋) → (𝑦 𝑧 ↔ (𝐹𝑦) ≤ (𝐹𝑧)))
54533adant3r1 1178 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑦 𝑧 ↔ (𝐹𝑦) ≤ (𝐹𝑧)))
5552, 54anbi12d 632 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 𝑦𝑦 𝑧) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧))))
561, 8, 9, 6, 4znleval2 20702 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑧𝑋) → (𝑥 𝑧 ↔ (𝐹𝑥) ≤ (𝐹𝑧)))
57563adant3r2 1179 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 𝑧 ↔ (𝐹𝑥) ≤ (𝐹𝑧)))
5851, 55, 573imtr4d 296 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
593, 5, 7, 30, 45, 58isposd 17565 . 2 (𝑁 ∈ ℕ0𝑌 ∈ Poset)
6035, 37letrid 10792 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ∨ (𝐹𝑦) ≤ (𝐹𝑥)))
6131, 33orbi12d 915 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∨ (𝐹𝑦) ≤ (𝐹𝑥))))
6260, 61mpbird 259 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑥 𝑦𝑦 𝑥))
63623expb 1116 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 𝑦𝑦 𝑥))
6463ralrimivva 3191 . 2 (𝑁 ∈ ℕ0 → ∀𝑥𝑋𝑦𝑋 (𝑥 𝑦𝑦 𝑥))
654, 6istos 17645 . 2 (𝑌 ∈ Toset ↔ (𝑌 ∈ Poset ∧ ∀𝑥𝑋𝑦𝑋 (𝑥 𝑦𝑦 𝑥)))
6659, 64, 65sylanbrc 585 1 (𝑁 ∈ ℕ0𝑌 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  ifcif 4467   class class class wbr 5066  ccnv 5554  cres 5557  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  cle 10676  0cn0 11898  cz 11982  ..^cfzo 13034  Basecbs 16483  lecple 16572  Posetcpo 17550  Tosetctos 17643  ℤRHomczrh 20647  ℤ/nczn 20650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-dvds 15608  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-imas 16781  df-qus 16782  df-poset 17556  df-toset 17644  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zn 20654
This theorem is referenced by:  zntos  20704
  Copyright terms: Public domain W3C validator