MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubadd Structured version   Visualization version   GIF version

Theorem grpsubadd 18956
Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpsubadd ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))

Proof of Theorem grpsubadd
StepHypRef Expression
1 grpsubadd.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 grpsubadd.p . . . . . . 7 + = (+g𝐺)
3 eqid 2726 . . . . . . 7 (invg𝐺) = (invg𝐺)
4 grpsubadd.m . . . . . . 7 = (-g𝐺)
51, 2, 3, 4grpsubval 18915 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
653adant3 1129 . . . . 5 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
76adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
87eqeq1d 2728 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
9 simpl 482 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
10 simpr1 1191 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 3grpinvcl 18917 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
12113ad2antr2 1186 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
131, 2grpcl 18871 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
149, 10, 12, 13syl3anc 1368 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
15 simpr3 1193 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
16 simpr2 1192 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
171, 2grprcan 18903 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵𝑍𝐵𝑌𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
189, 14, 15, 16, 17syl13anc 1369 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
191, 2grpass 18872 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)))
209, 10, 12, 16, 19syl13anc 1369 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)))
21 eqid 2726 . . . . . . . 8 (0g𝐺) = (0g𝐺)
221, 2, 21, 3grplinv 18919 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (((invg𝐺)‘𝑌) + 𝑌) = (0g𝐺))
23223ad2antr2 1186 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑌) + 𝑌) = (0g𝐺))
2423oveq2d 7421 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)) = (𝑋 + (0g𝐺)))
251, 2, 21grprid 18898 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
26253ad2antr1 1185 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (0g𝐺)) = 𝑋)
2720, 24, 263eqtrd 2770 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = 𝑋)
2827eqeq1d 2728 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ 𝑋 = (𝑍 + 𝑌)))
298, 18, 283bitr2d 307 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍𝑋 = (𝑍 + 𝑌)))
30 eqcom 2733 . 2 (𝑋 = (𝑍 + 𝑌) ↔ (𝑍 + 𝑌) = 𝑋)
3129, 30bitrdi 287 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206  0gc0g 17394  Grpcgrp 18863  invgcminusg 18864  -gcsg 18865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-sbg 18868
This theorem is referenced by:  grpsubsub4  18961  xpsgrpsub  18989  conjghm  19174  conjnmzb  19178  sylow3lem2  19548  ablsubadd  19729  ablsubsub23  19744  pgpfac1lem2  19997  pgpfac1lem4  20000  lspexch  20980  ipsubdir  21535  ipsubdi  21536  coe1subfv  22140  lindsunlem  33227  zlmodzxzsub  47312
  Copyright terms: Public domain W3C validator