MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubadd Structured version   Visualization version   GIF version

Theorem grpsubadd 17772
Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpsubadd ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))

Proof of Theorem grpsubadd
StepHypRef Expression
1 grpsubadd.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 grpsubadd.p . . . . . . 7 + = (+g𝐺)
3 eqid 2765 . . . . . . 7 (invg𝐺) = (invg𝐺)
4 grpsubadd.m . . . . . . 7 = (-g𝐺)
51, 2, 3, 4grpsubval 17734 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
653adant3 1162 . . . . 5 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
76adantl 473 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
87eqeq1d 2767 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
9 simpl 474 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
10 simpr1 1248 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 3grpinvcl 17736 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
12113ad2antr2 1240 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
131, 2grpcl 17699 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
149, 10, 12, 13syl3anc 1490 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
15 simpr3 1252 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
16 simpr2 1250 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
171, 2grprcan 17724 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵𝑍𝐵𝑌𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
189, 14, 15, 16, 17syl13anc 1491 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
191, 2grpass 17700 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)))
209, 10, 12, 16, 19syl13anc 1491 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)))
21 eqid 2765 . . . . . . . 8 (0g𝐺) = (0g𝐺)
221, 2, 21, 3grplinv 17737 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (((invg𝐺)‘𝑌) + 𝑌) = (0g𝐺))
23223ad2antr2 1240 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑌) + 𝑌) = (0g𝐺))
2423oveq2d 6858 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)) = (𝑋 + (0g𝐺)))
251, 2, 21grprid 17722 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
26253ad2antr1 1239 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (0g𝐺)) = 𝑋)
2720, 24, 263eqtrd 2803 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = 𝑋)
2827eqeq1d 2767 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ 𝑋 = (𝑍 + 𝑌)))
298, 18, 283bitr2d 298 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍𝑋 = (𝑍 + 𝑌)))
30 eqcom 2772 . 2 (𝑋 = (𝑍 + 𝑌) ↔ (𝑍 + 𝑌) = 𝑋)
3129, 30syl6bb 278 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  cfv 6068  (class class class)co 6842  Basecbs 16132  +gcplusg 16216  0gc0g 16368  Grpcgrp 17691  invgcminusg 17692  -gcsg 17693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-sbg 17696
This theorem is referenced by:  grpsubsub4  17777  conjghm  17957  conjnmzb  17961  sylow3lem2  18309  ablsubadd  18483  ablsubsub23  18496  pgpfac1lem2  18741  pgpfac1lem4  18744  lspexch  19402  coe1subfv  19909  ipsubdir  20262  ipsubdi  20263  zlmodzxzsub  42739
  Copyright terms: Public domain W3C validator