MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubadd Structured version   Visualization version   GIF version

Theorem grpsubadd 18960
Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpsubadd ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))

Proof of Theorem grpsubadd
StepHypRef Expression
1 grpsubadd.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 grpsubadd.p . . . . . . 7 + = (+g𝐺)
3 eqid 2729 . . . . . . 7 (invg𝐺) = (invg𝐺)
4 grpsubadd.m . . . . . . 7 = (-g𝐺)
51, 2, 3, 4grpsubval 18917 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
653adant3 1132 . . . . 5 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
76adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
87eqeq1d 2731 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
9 simpl 482 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
10 simpr1 1195 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
111, 3grpinvcl 18919 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
12113ad2antr2 1190 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
131, 2grpcl 18873 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
149, 10, 12, 13syl3anc 1373 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
15 simpr3 1197 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
16 simpr2 1196 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
171, 2grprcan 18905 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵𝑍𝐵𝑌𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
189, 14, 15, 16, 17syl13anc 1374 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ (𝑋 + ((invg𝐺)‘𝑌)) = 𝑍))
191, 2grpass 18874 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)))
209, 10, 12, 16, 19syl13anc 1374 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)))
21 eqid 2729 . . . . . . . 8 (0g𝐺) = (0g𝐺)
221, 2, 21, 3grplinv 18921 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (((invg𝐺)‘𝑌) + 𝑌) = (0g𝐺))
23223ad2antr2 1190 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑌) + 𝑌) = (0g𝐺))
2423oveq2d 7403 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (((invg𝐺)‘𝑌) + 𝑌)) = (𝑋 + (0g𝐺)))
251, 2, 21grprid 18900 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
26253ad2antr1 1189 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + (0g𝐺)) = 𝑋)
2720, 24, 263eqtrd 2768 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = 𝑋)
2827eqeq1d 2731 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 + ((invg𝐺)‘𝑌)) + 𝑌) = (𝑍 + 𝑌) ↔ 𝑋 = (𝑍 + 𝑌)))
298, 18, 283bitr2d 307 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍𝑋 = (𝑍 + 𝑌)))
30 eqcom 2736 . 2 (𝑋 = (𝑍 + 𝑌) ↔ (𝑍 + 𝑌) = 𝑋)
3129, 30bitrdi 287 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870
This theorem is referenced by:  grpsubsub4  18965  xpsgrpsub  18993  conjghm  19181  conjnmzb  19185  sylow3lem2  19558  ablsubadd  19739  ablsubsub23  19754  pgpfac1lem2  20007  pgpfac1lem4  20010  lspexch  21039  ipsubdir  21551  ipsubdi  21552  coe1subfv  22152  lindsunlem  33620  zlmodzxzsub  48348
  Copyright terms: Public domain W3C validator