Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn2 Structured version   Visualization version   GIF version

Theorem cvrnbtwn2 39275
Description: The covers relation implies no in-betweenness. (cvnbtwn2 32223 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) ↔ 𝑍 = 𝑌))

Proof of Theorem cvrnbtwn2
StepHypRef Expression
1 cvrletr.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvrletr.s . . . . . 6 < = (lt‘𝐾)
3 cvrletr.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 39271 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
543expia 1121 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
6 iman 401 . . . . 5 (((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌) ↔ ¬ ((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌))
7 anass 468 . . . . . . 7 (((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ (𝑋 < 𝑍 ∧ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌)))
8 simpl 482 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Poset)
9 simpr3 1197 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
10 simpr2 1196 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
11 cvrletr.l . . . . . . . . . . 11 = (le‘𝐾)
1211, 2pltval 18298 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑍𝐵𝑌𝐵) → (𝑍 < 𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
138, 9, 10, 12syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 < 𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
14 df-ne 2927 . . . . . . . . . 10 (𝑍𝑌 ↔ ¬ 𝑍 = 𝑌)
1514anbi2i 623 . . . . . . . . 9 ((𝑍 𝑌𝑍𝑌) ↔ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌))
1613, 15bitrdi 287 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 < 𝑌 ↔ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌)))
1716anbi2d 630 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑍𝑍 < 𝑌) ↔ (𝑋 < 𝑍 ∧ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌))))
187, 17bitr4id 290 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ (𝑋 < 𝑍𝑍 < 𝑌)))
1918notbid 318 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ ((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
206, 19bitr2id 284 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌)))
215, 20sylibd 239 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌)))
22213impia 1117 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌))
231, 2, 3cvrlt 39270 . . . . . . 7 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
2423ex 412 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 < 𝑌))
25243adant3r3 1185 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋 < 𝑌))
26253impia 1117 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
27 breq2 5114 . . . 4 (𝑍 = 𝑌 → (𝑋 < 𝑍𝑋 < 𝑌))
2826, 27syl5ibrcom 247 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑋 < 𝑍))
291, 11posref 18286 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
30293ad2antr2 1190 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 𝑌)
31 breq1 5113 . . . . 5 (𝑍 = 𝑌 → (𝑍 𝑌𝑌 𝑌))
3230, 31syl5ibrcom 247 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 = 𝑌𝑍 𝑌))
33323adant3 1132 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑍 𝑌))
3428, 33jcad 512 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌 → (𝑋 < 𝑍𝑍 𝑌)))
3522, 34impbid 212 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) ↔ 𝑍 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  Posetcpo 18275  ltcplt 18276  ccvr 39262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-proset 18262  df-poset 18281  df-plt 18296  df-covers 39266
This theorem is referenced by:  cvrval3  39414  cvrexchlem  39420
  Copyright terms: Public domain W3C validator