Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn2 Structured version   Visualization version   GIF version

Theorem cvrnbtwn2 37289
Description: The covers relation implies no in-betweenness. (cvnbtwn2 30649 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) ↔ 𝑍 = 𝑌))

Proof of Theorem cvrnbtwn2
StepHypRef Expression
1 cvrletr.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvrletr.s . . . . . 6 < = (lt‘𝐾)
3 cvrletr.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 37285 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
543expia 1120 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
6 iman 402 . . . . 5 (((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌) ↔ ¬ ((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌))
7 anass 469 . . . . . . 7 (((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ (𝑋 < 𝑍 ∧ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌)))
8 simpl 483 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Poset)
9 simpr3 1195 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
10 simpr2 1194 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
11 cvrletr.l . . . . . . . . . . 11 = (le‘𝐾)
1211, 2pltval 18050 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑍𝐵𝑌𝐵) → (𝑍 < 𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
138, 9, 10, 12syl3anc 1370 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 < 𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
14 df-ne 2944 . . . . . . . . . 10 (𝑍𝑌 ↔ ¬ 𝑍 = 𝑌)
1514anbi2i 623 . . . . . . . . 9 ((𝑍 𝑌𝑍𝑌) ↔ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌))
1613, 15bitrdi 287 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 < 𝑌 ↔ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌)))
1716anbi2d 629 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑍𝑍 < 𝑌) ↔ (𝑋 < 𝑍 ∧ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌))))
187, 17bitr4id 290 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ (𝑋 < 𝑍𝑍 < 𝑌)))
1918notbid 318 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ ((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
206, 19bitr2id 284 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌)))
215, 20sylibd 238 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌)))
22213impia 1116 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌))
231, 2, 3cvrlt 37284 . . . . . . 7 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
2423ex 413 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 < 𝑌))
25243adant3r3 1183 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋 < 𝑌))
26253impia 1116 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
27 breq2 5078 . . . 4 (𝑍 = 𝑌 → (𝑋 < 𝑍𝑋 < 𝑌))
2826, 27syl5ibrcom 246 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑋 < 𝑍))
291, 11posref 18036 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
30293ad2antr2 1188 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 𝑌)
31 breq1 5077 . . . . 5 (𝑍 = 𝑌 → (𝑍 𝑌𝑌 𝑌))
3230, 31syl5ibrcom 246 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 = 𝑌𝑍 𝑌))
33323adant3 1131 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑍 𝑌))
3428, 33jcad 513 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌 → (𝑋 < 𝑍𝑍 𝑌)))
3522, 34impbid 211 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) ↔ 𝑍 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  ltcplt 18026  ccvr 37276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-proset 18013  df-poset 18031  df-plt 18048  df-covers 37280
This theorem is referenced by:  cvrval3  37427  cvrexchlem  37433
  Copyright terms: Public domain W3C validator