MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglesuppOLD Structured version   Visualization version   GIF version

Theorem psrbaglesuppOLD 20701
Description: Obsolete version of psrbaglesupp 20700 as of 5-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesuppOLD ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglesuppOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frnnn0supp 12003 . . 3 ((𝐼𝑉𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
213ad2antr2 1186 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 supp 0) = (𝐺 “ ℕ))
3 simpr2 1192 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺:𝐼⟶ℕ0)
4 eldifi 4034 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ)) → 𝑥𝐼)
5 simpr3 1193 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺r𝐹)
63ffnd 6504 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺 Fn 𝐼)
7 psrbag.d . . . . . . . . . . . 12 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbagfOLD 20695 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
983ad2antr1 1185 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐹:𝐼⟶ℕ0)
109ffnd 6504 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐹 Fn 𝐼)
11 simpl 486 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐼𝑉)
12 inidm 4125 . . . . . . . . 9 (𝐼𝐼) = 𝐼
13 eqidd 2759 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
14 eqidd 2759 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
156, 10, 11, 11, 12, 13, 14ofrfval 7420 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
165, 15mpbid 235 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1716r19.21bi 3137 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
184, 17sylan2 595 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ (𝐹𝑥))
1911, 9jca 515 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
20 frnnn0supp 12003 . . . . . . 7 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
21 eqimss 3950 . . . . . . 7 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
2219, 20, 213syl 18 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
23 c0ex 10686 . . . . . . 7 0 ∈ V
2423a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 0 ∈ V)
259, 22, 11, 24suppssr 7876 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
2618, 25breqtrd 5062 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ 0)
27 ffvelrn 6846 . . . . . 6 ((𝐺:𝐼⟶ℕ0𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
283, 4, 27syl2an 598 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℕ0)
2928nn0ge0d 12010 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → 0 ≤ (𝐺𝑥))
3028nn0red 12008 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℝ)
31 0re 10694 . . . . 5 0 ∈ ℝ
32 letri3 10777 . . . . 5 (((𝐺𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3330, 31, 32sylancl 589 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3426, 29, 33mpbir2and 712 . . 3 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) = 0)
353, 34suppss 7874 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 supp 0) ⊆ (𝐹 “ ℕ))
362, 35eqsstrrd 3933 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  {crab 3074  Vcvv 3409  cdif 3857  wss 3860   class class class wbr 5036  ccnv 5527  cima 5531  wf 6336  cfv 6340  (class class class)co 7156  r cofr 7410   supp csupp 7841  m cmap 8422  Fincfn 8540  cr 10587  0cc0 10588  cle 10727  cn 11687  0cn0 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-ofr 7412  df-om 7586  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-n0 11948
This theorem is referenced by:  psrbagleclOLD  20703  psrbagconOLD  20707
  Copyright terms: Public domain W3C validator