MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglesuppOLD Structured version   Visualization version   GIF version

Theorem psrbaglesuppOLD 21038
Description: Obsolete version of psrbaglesupp 21037 as of 5-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesuppOLD ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglesuppOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frnnn0supp 12219 . . 3 ((𝐼𝑉𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
213ad2antr2 1187 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 supp 0) = (𝐺 “ ℕ))
3 simpr2 1193 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺:𝐼⟶ℕ0)
4 eldifi 4057 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ)) → 𝑥𝐼)
5 simpr3 1194 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺r𝐹)
63ffnd 6585 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐺 Fn 𝐼)
7 psrbag.d . . . . . . . . . . . 12 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbagfOLD 21032 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
983ad2antr1 1186 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐹:𝐼⟶ℕ0)
109ffnd 6585 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐹 Fn 𝐼)
11 simpl 482 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 𝐼𝑉)
12 inidm 4149 . . . . . . . . 9 (𝐼𝐼) = 𝐼
13 eqidd 2739 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
14 eqidd 2739 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
156, 10, 11, 11, 12, 13, 14ofrfval 7521 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
165, 15mpbid 231 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1716r19.21bi 3132 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
184, 17sylan2 592 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ (𝐹𝑥))
1911, 9jca 511 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
20 frnnn0supp 12219 . . . . . . 7 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
21 eqimss 3973 . . . . . . 7 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
2219, 20, 213syl 18 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
23 c0ex 10900 . . . . . . 7 0 ∈ V
2423a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → 0 ∈ V)
259, 22, 11, 24suppssr 7983 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
2618, 25breqtrd 5096 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ 0)
27 ffvelrn 6941 . . . . . 6 ((𝐺:𝐼⟶ℕ0𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
283, 4, 27syl2an 595 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℕ0)
2928nn0ge0d 12226 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → 0 ≤ (𝐺𝑥))
3028nn0red 12224 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℝ)
31 0re 10908 . . . . 5 0 ∈ ℝ
32 letri3 10991 . . . . 5 (((𝐺𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3330, 31, 32sylancl 585 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3426, 29, 33mpbir2and 709 . . 3 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) = 0)
353, 34suppss 7981 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 supp 0) ⊆ (𝐹 “ ℕ))
362, 35eqsstrrd 3956 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  wss 3883   class class class wbr 5070  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  r cofr 7510   supp csupp 7948  m cmap 8573  Fincfn 8691  cr 10801  0cc0 10802  cle 10941  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-ofr 7512  df-om 7688  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164
This theorem is referenced by:  psrbagleclOLD  21040  psrbagconOLD  21044
  Copyright terms: Public domain W3C validator