| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8122 ttrcltr 9669 ttrclss 9673 dmttrcl 9674 ttrclselem2 9679 oppccatid 17680 subccatid 17808 setccatid 18046 catccatid 18068 estrccatid 18093 xpccatid 18149 kerf1ghm 19179 gsmsymgreqlem1 19360 nllyidm 23376 noinfbnd1lem5 27639 ax5seg 28865 3pthdlem1 30093 segconeq 35998 ifscgr 36032 brofs2 36065 brifs2 36066 idinside 36072 btwnconn1lem8 36082 btwnconn1lem12 36086 segcon2 36093 segletr 36102 outsidele 36120 unbdqndv2 36499 lplnexllnN 39558 paddasslem9 39822 pmodlem2 39841 lhp2lt 39995 cdlemc3 40187 cdlemc4 40188 cdlemd1 40192 cdleme3b 40223 cdleme3c 40224 cdleme42ke 40479 cdlemg4c 40606 clnbgrgrimlem 47933 ssccatid 49061 isthincd2 49426 mndtccatid 49576 |
| Copyright terms: Public domain | W3C validator |