Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr2 1188 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ttrcltr 9474 ttrclss 9478 dmttrcl 9479 ttrclselem2 9484 oppccatid 17430 subccatid 17561 setccatid 17799 catccatid 17821 estrccatid 17848 xpccatid 17905 gsmsymgreqlem1 19038 kerf1ghm 19987 nllyidm 22640 ax5seg 27306 3pthdlem1 28528 poxp2 33790 noinfbnd1lem5 33930 segconeq 34312 ifscgr 34346 brofs2 34379 brifs2 34380 idinside 34386 btwnconn1lem8 34396 btwnconn1lem12 34400 segcon2 34407 segletr 34416 outsidele 34434 unbdqndv2 34691 lplnexllnN 37578 paddasslem9 37842 pmodlem2 37861 lhp2lt 38015 cdlemc3 38207 cdlemc4 38208 cdlemd1 38212 cdleme3b 38243 cdleme3c 38244 cdleme42ke 38499 cdlemg4c 38626 isthincd2 46319 mndtccatid 46374 |
Copyright terms: Public domain | W3C validator |