| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8147 ttrcltr 9735 ttrclss 9739 dmttrcl 9740 ttrclselem2 9745 oppccatid 17736 subccatid 17864 setccatid 18102 catccatid 18124 estrccatid 18149 xpccatid 18205 kerf1ghm 19235 gsmsymgreqlem1 19416 nllyidm 23432 noinfbnd1lem5 27696 ax5seg 28922 3pthdlem1 30150 segconeq 36033 ifscgr 36067 brofs2 36100 brifs2 36101 idinside 36107 btwnconn1lem8 36117 btwnconn1lem12 36121 segcon2 36128 segletr 36137 outsidele 36155 unbdqndv2 36534 lplnexllnN 39588 paddasslem9 39852 pmodlem2 39871 lhp2lt 40025 cdlemc3 40217 cdlemc4 40218 cdlemd1 40222 cdleme3b 40253 cdleme3c 40254 cdleme42ke 40509 cdlemg4c 40636 clnbgrgrimlem 47913 ssccatid 49006 isthincd2 49290 mndtccatid 49431 |
| Copyright terms: Public domain | W3C validator |