![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr2 1189 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: poxp2 8184 ttrcltr 9785 ttrclss 9789 dmttrcl 9790 ttrclselem2 9795 oppccatid 17779 subccatid 17910 setccatid 18151 catccatid 18173 estrccatid 18200 xpccatid 18257 kerf1ghm 19287 gsmsymgreqlem1 19472 nllyidm 23518 noinfbnd1lem5 27790 ax5seg 28971 3pthdlem1 30196 segconeq 35974 ifscgr 36008 brofs2 36041 brifs2 36042 idinside 36048 btwnconn1lem8 36058 btwnconn1lem12 36062 segcon2 36069 segletr 36078 outsidele 36096 unbdqndv2 36477 lplnexllnN 39521 paddasslem9 39785 pmodlem2 39804 lhp2lt 39958 cdlemc3 40150 cdlemc4 40151 cdlemd1 40155 cdleme3b 40186 cdleme3c 40187 cdleme42ke 40442 cdlemg4c 40569 clnbgrgrimlem 47785 isthincd2 48705 mndtccatid 48760 |
Copyright terms: Public domain | W3C validator |