| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 ttrcltr 9676 ttrclss 9680 dmttrcl 9681 ttrclselem2 9686 oppccatid 17687 subccatid 17815 setccatid 18053 catccatid 18075 estrccatid 18100 xpccatid 18156 kerf1ghm 19186 gsmsymgreqlem1 19367 nllyidm 23383 noinfbnd1lem5 27646 ax5seg 28872 3pthdlem1 30100 segconeq 36005 ifscgr 36039 brofs2 36072 brifs2 36073 idinside 36079 btwnconn1lem8 36089 btwnconn1lem12 36093 segcon2 36100 segletr 36109 outsidele 36127 unbdqndv2 36506 lplnexllnN 39565 paddasslem9 39829 pmodlem2 39848 lhp2lt 40002 cdlemc3 40194 cdlemc4 40195 cdlemd1 40199 cdleme3b 40230 cdleme3c 40231 cdleme42ke 40486 cdlemg4c 40613 clnbgrgrimlem 47937 ssccatid 49065 isthincd2 49430 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |