![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: poxp2 8129 ttrcltr 9711 ttrclss 9715 dmttrcl 9716 ttrclselem2 9721 oppccatid 17665 subccatid 17796 setccatid 18034 catccatid 18056 estrccatid 18083 xpccatid 18140 gsmsymgreqlem1 19298 kerf1ghm 20282 nllyidm 22993 noinfbnd1lem5 27230 ax5seg 28227 3pthdlem1 29448 segconeq 35013 ifscgr 35047 brofs2 35080 brifs2 35081 idinside 35087 btwnconn1lem8 35097 btwnconn1lem12 35101 segcon2 35108 segletr 35117 outsidele 35135 unbdqndv2 35435 lplnexllnN 38483 paddasslem9 38747 pmodlem2 38766 lhp2lt 38920 cdlemc3 39112 cdlemc4 39113 cdlemd1 39117 cdleme3b 39148 cdleme3c 39149 cdleme42ke 39404 cdlemg4c 39531 isthincd2 47706 mndtccatid 47761 |
Copyright terms: Public domain | W3C validator |