![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: poxp2 8129 ttrcltr 9711 ttrclss 9715 dmttrcl 9716 ttrclselem2 9721 oppccatid 17665 subccatid 17796 setccatid 18034 catccatid 18056 estrccatid 18083 xpccatid 18140 gsmsymgreqlem1 19298 kerf1ghm 20282 nllyidm 22993 noinfbnd1lem5 27230 ax5seg 28196 3pthdlem1 29417 segconeq 34982 ifscgr 35016 brofs2 35049 brifs2 35050 idinside 35056 btwnconn1lem8 35066 btwnconn1lem12 35070 segcon2 35077 segletr 35086 outsidele 35104 unbdqndv2 35387 lplnexllnN 38435 paddasslem9 38699 pmodlem2 38718 lhp2lt 38872 cdlemc3 39064 cdlemc4 39065 cdlemd1 39069 cdleme3b 39100 cdleme3c 39101 cdleme42ke 39356 cdlemg4c 39483 isthincd2 47658 mndtccatid 47713 |
Copyright terms: Public domain | W3C validator |