Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 771 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: oppccatid 17096 subccatid 17224 setccatid 17459 catccatid 17481 estrccatid 17501 xpccatid 17557 gsmsymgreqlem1 18679 kerf1ghm 19620 nllyidm 22243 ax5seg 26887 3pthdlem1 28104 poxp2 33406 noinfbnd1lem5 33576 segconeq 33958 ifscgr 33992 brofs2 34025 brifs2 34026 idinside 34032 btwnconn1lem8 34042 btwnconn1lem12 34046 segcon2 34053 segletr 34062 outsidele 34080 unbdqndv2 34337 lplnexllnN 37224 paddasslem9 37488 pmodlem2 37507 lhp2lt 37661 cdlemc3 37853 cdlemc4 37854 cdlemd1 37858 cdleme3b 37889 cdleme3c 37890 cdleme42ke 38145 cdlemg4c 38272 isthincd2 45822 mndtccatid 45857 |
Copyright terms: Public domain | W3C validator |