| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8073 ttrcltr 9606 ttrclss 9610 dmttrcl 9611 ttrclselem2 9616 oppccatid 17622 subccatid 17750 setccatid 17988 catccatid 18010 estrccatid 18035 xpccatid 18091 kerf1ghm 19157 gsmsymgreqlem1 19340 nllyidm 23402 noinfbnd1lem5 27664 ax5seg 28914 3pthdlem1 30139 segconeq 36043 ifscgr 36077 brofs2 36110 brifs2 36111 idinside 36117 btwnconn1lem8 36127 btwnconn1lem12 36131 segcon2 36138 segletr 36147 outsidele 36165 unbdqndv2 36544 lplnexllnN 39602 paddasslem9 39866 pmodlem2 39885 lhp2lt 40039 cdlemc3 40231 cdlemc4 40232 cdlemd1 40236 cdleme3b 40267 cdleme3c 40268 cdleme42ke 40523 cdlemg4c 40650 clnbgrgrimlem 47963 ssccatid 49103 isthincd2 49468 mndtccatid 49618 |
| Copyright terms: Public domain | W3C validator |