| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr2l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr2l | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr2 1190 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8079 ttrcltr 9613 ttrclss 9617 dmttrcl 9618 ttrclselem2 9623 oppccatid 17627 subccatid 17755 setccatid 17993 catccatid 18015 estrccatid 18040 xpccatid 18096 kerf1ghm 19161 gsmsymgreqlem1 19344 nllyidm 23405 noinfbnd1lem5 27667 ax5seg 28918 3pthdlem1 30146 segconeq 36075 ifscgr 36109 brofs2 36142 brifs2 36143 idinside 36149 btwnconn1lem8 36159 btwnconn1lem12 36163 segcon2 36170 segletr 36179 outsidele 36197 unbdqndv2 36576 lplnexllnN 39683 paddasslem9 39947 pmodlem2 39966 lhp2lt 40120 cdlemc3 40312 cdlemc4 40313 cdlemd1 40317 cdleme3b 40348 cdleme3c 40349 cdleme42ke 40604 cdlemg4c 40731 clnbgrgrimlem 48057 ssccatid 49197 isthincd2 49562 mndtccatid 49712 |
| Copyright terms: Public domain | W3C validator |