Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgmnd Structured version   Visualization version   GIF version

Theorem idlsrgmnd 31067
 Description: The ideals of a ring form a monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypothesis
Ref Expression
idlsrgmnd.1 𝑆 = (IDLsrg‘𝑅)
Assertion
Ref Expression
idlsrgmnd (𝑅 ∈ Ring → 𝑆 ∈ Mnd)

Proof of Theorem idlsrgmnd
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgmnd.1 . . 3 𝑆 = (IDLsrg‘𝑅)
2 eqid 2801 . . 3 (LIdeal‘𝑅) = (LIdeal‘𝑅)
31, 2idlsrgbas 31057 . 2 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (Base‘𝑆))
4 eqid 2801 . . 3 (LSSum‘𝑅) = (LSSum‘𝑅)
51, 4idlsrgplusg 31058 . 2 (𝑅 ∈ Ring → (LSSum‘𝑅) = (+g𝑆))
6 eqid 2801 . . 3 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2801 . . 3 (RSpan‘𝑅) = (RSpan‘𝑅)
8 simp1 1133 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Ring)
9 simp2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
10 simp3 1135 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
116, 4, 7, 8, 9, 10lsmidl 31011 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑖(LSSum‘𝑅)𝑗) ∈ (LIdeal‘𝑅))
122lidlsubg 19984 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (SubGrp‘𝑅))
13123ad2antr1 1185 . . 3 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → 𝑖 ∈ (SubGrp‘𝑅))
142lidlsubg 19984 . . . 4 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ (SubGrp‘𝑅))
15143ad2antr2 1186 . . 3 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → 𝑗 ∈ (SubGrp‘𝑅))
162lidlsubg 19984 . . . 4 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (SubGrp‘𝑅))
17163ad2antr3 1187 . . 3 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → 𝑘 ∈ (SubGrp‘𝑅))
184lsmass 18790 . . 3 ((𝑖 ∈ (SubGrp‘𝑅) ∧ 𝑗 ∈ (SubGrp‘𝑅) ∧ 𝑘 ∈ (SubGrp‘𝑅)) → ((𝑖(LSSum‘𝑅)𝑗)(LSSum‘𝑅)𝑘) = (𝑖(LSSum‘𝑅)(𝑗(LSSum‘𝑅)𝑘)))
1913, 15, 17, 18syl3anc 1368 . 2 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → ((𝑖(LSSum‘𝑅)𝑗)(LSSum‘𝑅)𝑘) = (𝑖(LSSum‘𝑅)(𝑗(LSSum‘𝑅)𝑘)))
20 eqid 2801 . . 3 (0g𝑅) = (0g𝑅)
212, 20lidl0 19988 . 2 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
2220, 4lsm02 18793 . . 3 (𝑖 ∈ (SubGrp‘𝑅) → ({(0g𝑅)} (LSSum‘𝑅)𝑖) = 𝑖)
2312, 22syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → ({(0g𝑅)} (LSSum‘𝑅)𝑖) = 𝑖)
2420, 4lsm01 18792 . . 3 (𝑖 ∈ (SubGrp‘𝑅) → (𝑖(LSSum‘𝑅){(0g𝑅)}) = 𝑖)
2512, 24syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑖(LSSum‘𝑅){(0g𝑅)}) = 𝑖)
263, 5, 11, 19, 21, 23, 25ismndd 17928 1 (𝑅 ∈ Ring → 𝑆 ∈ Mnd)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  {csn 4528  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  0gc0g 16708  Mndcmnd 17906  SubGrpcsubg 18268  LSSumclsm 18754  Ringcrg 19293  LIdealclidl 19938  RSpancrsp 19939  IDLsrgcidlsrg 31053 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-cntz 18442  df-lsm 18756  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-rsp 19943  df-idlsrg 31054 This theorem is referenced by:  idlsrgcmnd  31068
 Copyright terms: Public domain W3C validator