Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgmnd Structured version   Visualization version   GIF version

Theorem idlsrgmnd 31165
Description: The ideals of a ring form a monoid. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypothesis
Ref Expression
idlsrgmnd.1 𝑆 = (IDLsrg‘𝑅)
Assertion
Ref Expression
idlsrgmnd (𝑅 ∈ Ring → 𝑆 ∈ Mnd)

Proof of Theorem idlsrgmnd
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgmnd.1 . . 3 𝑆 = (IDLsrg‘𝑅)
2 eqid 2759 . . 3 (LIdeal‘𝑅) = (LIdeal‘𝑅)
31, 2idlsrgbas 31155 . 2 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (Base‘𝑆))
4 eqid 2759 . . 3 (LSSum‘𝑅) = (LSSum‘𝑅)
51, 4idlsrgplusg 31156 . 2 (𝑅 ∈ Ring → (LSSum‘𝑅) = (+g𝑆))
6 eqid 2759 . . 3 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2759 . . 3 (RSpan‘𝑅) = (RSpan‘𝑅)
8 simp1 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Ring)
9 simp2 1135 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (LIdeal‘𝑅))
10 simp3 1136 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
116, 4, 7, 8, 9, 10lsmidl 31095 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑖(LSSum‘𝑅)𝑗) ∈ (LIdeal‘𝑅))
122lidlsubg 20041 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (SubGrp‘𝑅))
13123ad2antr1 1186 . . 3 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → 𝑖 ∈ (SubGrp‘𝑅))
142lidlsubg 20041 . . . 4 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ (SubGrp‘𝑅))
15143ad2antr2 1187 . . 3 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → 𝑗 ∈ (SubGrp‘𝑅))
162lidlsubg 20041 . . . 4 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (SubGrp‘𝑅))
17163ad2antr3 1188 . . 3 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → 𝑘 ∈ (SubGrp‘𝑅))
184lsmass 18847 . . 3 ((𝑖 ∈ (SubGrp‘𝑅) ∧ 𝑗 ∈ (SubGrp‘𝑅) ∧ 𝑘 ∈ (SubGrp‘𝑅)) → ((𝑖(LSSum‘𝑅)𝑗)(LSSum‘𝑅)𝑘) = (𝑖(LSSum‘𝑅)(𝑗(LSSum‘𝑅)𝑘)))
1913, 15, 17, 18syl3anc 1369 . 2 ((𝑅 ∈ Ring ∧ (𝑖 ∈ (LIdeal‘𝑅) ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑘 ∈ (LIdeal‘𝑅))) → ((𝑖(LSSum‘𝑅)𝑗)(LSSum‘𝑅)𝑘) = (𝑖(LSSum‘𝑅)(𝑗(LSSum‘𝑅)𝑘)))
20 eqid 2759 . . 3 (0g𝑅) = (0g𝑅)
212, 20lidl0 20045 . 2 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
2220, 4lsm02 18850 . . 3 (𝑖 ∈ (SubGrp‘𝑅) → ({(0g𝑅)} (LSSum‘𝑅)𝑖) = 𝑖)
2312, 22syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → ({(0g𝑅)} (LSSum‘𝑅)𝑖) = 𝑖)
2420, 4lsm01 18849 . . 3 (𝑖 ∈ (SubGrp‘𝑅) → (𝑖(LSSum‘𝑅){(0g𝑅)}) = 𝑖)
2512, 24syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (𝑖(LSSum‘𝑅){(0g𝑅)}) = 𝑖)
263, 5, 11, 19, 21, 23, 25ismndd 17984 1 (𝑅 ∈ Ring → 𝑆 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  {csn 4515  cfv 6328  (class class class)co 7143  Basecbs 16526  0gc0g 16756  Mndcmnd 17962  SubGrpcsubg 18325  LSSumclsm 18811  Ringcrg 19350  LIdealclidl 19995  RSpancrsp 19996  IDLsrgcidlsrg 31151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-z 12006  df-dec 12123  df-uz 12268  df-fz 12925  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-ip 16626  df-tset 16627  df-ple 16628  df-0g 16758  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-cntz 18499  df-lsm 18813  df-cmn 18960  df-abl 18961  df-mgp 19293  df-ur 19305  df-ring 19352  df-subrg 19586  df-lmod 19689  df-lss 19757  df-lsp 19797  df-sra 19997  df-rgmod 19998  df-lidl 19999  df-rsp 20000  df-idlsrg 31152
This theorem is referenced by:  idlsrgcmnd  31166
  Copyright terms: Public domain W3C validator