Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospass Structured version   Visualization version   GIF version

Theorem tendospass 39233
Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendospass (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))

Proof of Theorem tendospass
StepHypRef Expression
1 tendosp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendosp.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendosp.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 38977 . . 3 (((𝐾𝑋𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
543ad2antr2 1189 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝑉:𝑇𝑇)
6 simpr3 1196 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝐹𝑇)
7 fvco3 6899 . 2 ((𝑉:𝑇𝑇𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
85, 6, 7syl2anc 585 1 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  ccom 5604  wf 6454  cfv 6458  LHypclh 38198  LTrncltrn 38315  TEndoctendo 38966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-map 8648  df-tendo 38969
This theorem is referenced by:  dvalveclem  39239
  Copyright terms: Public domain W3C validator