Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendospass | Structured version Visualization version GIF version |
Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.) |
Ref | Expression |
---|---|
tendosp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendosp.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendosp.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendospass | ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendosp.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | tendosp.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | tendosp.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendof 38765 | . . 3 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) → 𝑉:𝑇⟶𝑇) |
5 | 4 | 3ad2antr2 1188 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → 𝑉:𝑇⟶𝑇) |
6 | simpr3 1195 | . 2 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
7 | fvco3 6862 | . 2 ⊢ ((𝑉:𝑇⟶𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) | |
8 | 5, 6, 7 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∘ ccom 5593 ⟶wf 6427 ‘cfv 6431 LHypclh 37986 LTrncltrn 38103 TEndoctendo 38754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-map 8592 df-tendo 38757 |
This theorem is referenced by: dvalveclem 39027 |
Copyright terms: Public domain | W3C validator |