Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospass Structured version   Visualization version   GIF version

Theorem tendospass 41128
Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendospass (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))

Proof of Theorem tendospass
StepHypRef Expression
1 tendosp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendosp.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendosp.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 40872 . . 3 (((𝐾𝑋𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
543ad2antr2 1190 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝑉:𝑇𝑇)
6 simpr3 1197 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝐹𝑇)
7 fvco3 6930 . 2 ((𝑉:𝑇𝑇𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
85, 6, 7syl2anc 584 1 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  ccom 5625  wf 6485  cfv 6489  LHypclh 40093  LTrncltrn 40210  TEndoctendo 40861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-tendo 40864
This theorem is referenced by:  dvalveclem  41134
  Copyright terms: Public domain W3C validator