Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospass Structured version   Visualization version   GIF version

Theorem tendospass 39890
Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHypβ€˜πΎ)
tendosp.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendosp.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
tendospass (((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) β†’ ((π‘ˆ ∘ 𝑉)β€˜πΉ) = (π‘ˆβ€˜(π‘‰β€˜πΉ)))

Proof of Theorem tendospass
StepHypRef Expression
1 tendosp.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 tendosp.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 tendosp.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
41, 2, 3tendof 39634 . . 3 (((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) β†’ 𝑉:π‘‡βŸΆπ‘‡)
543ad2antr2 1190 . 2 (((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) β†’ 𝑉:π‘‡βŸΆπ‘‡)
6 simpr3 1197 . 2 (((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) β†’ 𝐹 ∈ 𝑇)
7 fvco3 6991 . 2 ((𝑉:π‘‡βŸΆπ‘‡ ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ˆ ∘ 𝑉)β€˜πΉ) = (π‘ˆβ€˜(π‘‰β€˜πΉ)))
85, 6, 7syl2anc 585 1 (((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) β†’ ((π‘ˆ ∘ 𝑉)β€˜πΉ) = (π‘ˆβ€˜(π‘‰β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   ∘ ccom 5681  βŸΆwf 6540  β€˜cfv 6544  LHypclh 38855  LTrncltrn 38972  TEndoctendo 39623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-tendo 39626
This theorem is referenced by:  dvalveclem  39896
  Copyright terms: Public domain W3C validator