Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospass Structured version   Visualization version   GIF version

Theorem tendospass 39021
Description: Associative law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendospass (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))

Proof of Theorem tendospass
StepHypRef Expression
1 tendosp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendosp.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendosp.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendof 38765 . . 3 (((𝐾𝑋𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
543ad2antr2 1188 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝑉:𝑇𝑇)
6 simpr3 1195 . 2 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝐹𝑇)
7 fvco3 6862 . 2 ((𝑉:𝑇𝑇𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
85, 6, 7syl2anc 584 1 (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  ccom 5593  wf 6427  cfv 6431  LHypclh 37986  LTrncltrn 38103  TEndoctendo 38754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-map 8592  df-tendo 38757
This theorem is referenced by:  dvalveclem  39027
  Copyright terms: Public domain W3C validator