Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsprlem Structured version   Visualization version   GIF version

Theorem ldepsprlem 44547
Description: Lemma for ldepspr 44548. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
ldepsprlem.1 1 = (1r𝑅)
ldepsprlem.n 𝑁 = (invg𝑅)
Assertion
Ref Expression
ldepsprlem ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍))

Proof of Theorem ldepsprlem
StepHypRef Expression
1 oveq2 7164 . . . 4 (𝑋 = (𝐴 · 𝑌) → ( 1 · 𝑋) = ( 1 · (𝐴 · 𝑌)))
21oveq1d 7171 . . 3 (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)))
3 simpl 485 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝑀 ∈ LMod)
4 snlindsntor.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
5 snlindsntor.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
6 ldepsprlem.1 . . . . . . . . 9 1 = (1r𝑅)
74, 5, 6lmod1cl 19661 . . . . . . . 8 (𝑀 ∈ LMod → 1𝑆)
87adantr 483 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 1𝑆)
9 simpr3 1192 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝐴𝑆)
10 simpr2 1191 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝑌𝐵)
11 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
12 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
13 eqid 2821 . . . . . . . 8 (.r𝑅) = (.r𝑅)
1411, 4, 12, 5, 13lmodvsass 19659 . . . . . . 7 ((𝑀 ∈ LMod ∧ ( 1𝑆𝐴𝑆𝑌𝐵)) → (( 1 (.r𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌)))
153, 8, 9, 10, 14syl13anc 1368 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 (.r𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌)))
1615eqcomd 2827 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 1 · (𝐴 · 𝑌)) = (( 1 (.r𝑅)𝐴) · 𝑌))
1716oveq1d 7171 . . . 4 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)) = ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
184lmodring 19642 . . . . . . . 8 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
19 simp3 1134 . . . . . . . 8 ((𝑋𝐵𝑌𝐵𝐴𝑆) → 𝐴𝑆)
205, 13, 6ringlidm 19321 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑆) → ( 1 (.r𝑅)𝐴) = 𝐴)
2118, 19, 20syl2an 597 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 1 (.r𝑅)𝐴) = 𝐴)
2221oveq1d 7171 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 (.r𝑅)𝐴) · 𝑌) = (𝐴 · 𝑌))
2322oveq1d 7171 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
244lmodfgrp 19643 . . . . . . 7 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
25 ldepsprlem.n . . . . . . . 8 𝑁 = (invg𝑅)
265, 25grpinvcl 18151 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → (𝑁𝐴) ∈ 𝑆)
2724, 19, 26syl2an 597 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑁𝐴) ∈ 𝑆)
28 eqid 2821 . . . . . . 7 (+g𝑀) = (+g𝑀)
29 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
3011, 28, 4, 12, 5, 29lmodvsdir 19658 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐴𝑆 ∧ (𝑁𝐴) ∈ 𝑆𝑌𝐵)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
313, 9, 27, 10, 30syl13anc 1368 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
32 snlindsntor.0 . . . . . . . . 9 0 = (0g𝑅)
335, 29, 32, 25grprinv 18153 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → (𝐴(+g𝑅)(𝑁𝐴)) = 0 )
3424, 19, 33syl2an 597 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝐴(+g𝑅)(𝑁𝐴)) = 0 )
3534oveq1d 7171 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ( 0 · 𝑌))
36 snlindsntor.z . . . . . . . 8 𝑍 = (0g𝑀)
3711, 4, 12, 32, 36lmod0vs 19667 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ( 0 · 𝑌) = 𝑍)
38373ad2antr2 1185 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 0 · 𝑌) = 𝑍)
3935, 38eqtrd 2856 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = 𝑍)
4023, 31, 393eqtr2d 2862 . . . 4 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
4117, 40eqtrd 2856 . . 3 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
422, 41sylan9eqr 2878 . 2 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) ∧ 𝑋 = (𝐴 · 𝑌)) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
4342ex 415 1 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104  1rcur 19251  Ringcrg 19297  LModclmod 19634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636
This theorem is referenced by:  ldepspr  44548
  Copyright terms: Public domain W3C validator