Proof of Theorem ldepsprlem
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . 4
⊢ (𝑋 = (𝐴 · 𝑌) → ( 1 · 𝑋) = ( 1 · (𝐴 · 𝑌))) |
2 | 1 | oveq1d 7270 |
. . 3
⊢ (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = (( 1 · (𝐴 · 𝑌))(+g‘𝑀)((𝑁‘𝐴) · 𝑌))) |
3 | | simpl 482 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → 𝑀 ∈ LMod) |
4 | | snlindsntor.r |
. . . . . . . . 9
⊢ 𝑅 = (Scalar‘𝑀) |
5 | | snlindsntor.s |
. . . . . . . . 9
⊢ 𝑆 = (Base‘𝑅) |
6 | | ldepsprlem.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
7 | 4, 5, 6 | lmod1cl 20065 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → 1 ∈ 𝑆) |
8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → 1 ∈ 𝑆) |
9 | | simpr3 1194 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → 𝐴 ∈ 𝑆) |
10 | | simpr2 1193 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → 𝑌 ∈ 𝐵) |
11 | | snlindsntor.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑀) |
12 | | snlindsntor.t |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑀) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
14 | 11, 4, 12, 5, 13 | lmodvsass 20063 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ ( 1 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝑌 ∈ 𝐵)) → (( 1 (.r‘𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌))) |
15 | 3, 8, 9, 10, 14 | syl13anc 1370 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (( 1 (.r‘𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌))) |
16 | 15 | eqcomd 2744 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ( 1 · (𝐴 · 𝑌)) = (( 1 (.r‘𝑅)𝐴) · 𝑌)) |
17 | 16 | oveq1d 7270 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (( 1 · (𝐴 · 𝑌))(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = ((( 1 (.r‘𝑅)𝐴) · 𝑌)(+g‘𝑀)((𝑁‘𝐴) · 𝑌))) |
18 | 4 | lmodring 20046 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
19 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
20 | 5, 13, 6 | ringlidm 19725 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑆) → ( 1 (.r‘𝑅)𝐴) = 𝐴) |
21 | 18, 19, 20 | syl2an 595 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ( 1 (.r‘𝑅)𝐴) = 𝐴) |
22 | 21 | oveq1d 7270 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (( 1 (.r‘𝑅)𝐴) · 𝑌) = (𝐴 · 𝑌)) |
23 | 22 | oveq1d 7270 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ((( 1 (.r‘𝑅)𝐴) · 𝑌)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = ((𝐴 · 𝑌)(+g‘𝑀)((𝑁‘𝐴) · 𝑌))) |
24 | 4 | lmodfgrp 20047 |
. . . . . . 7
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
25 | | ldepsprlem.n |
. . . . . . . 8
⊢ 𝑁 = (invg‘𝑅) |
26 | 5, 25 | grpinvcl 18542 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑆) → (𝑁‘𝐴) ∈ 𝑆) |
27 | 24, 19, 26 | syl2an 595 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝑁‘𝐴) ∈ 𝑆) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑀) = (+g‘𝑀) |
29 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
30 | 11, 28, 4, 12, 5, 29 | lmodvsdir 20062 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝐴 ∈ 𝑆 ∧ (𝑁‘𝐴) ∈ 𝑆 ∧ 𝑌 ∈ 𝐵)) → ((𝐴(+g‘𝑅)(𝑁‘𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g‘𝑀)((𝑁‘𝐴) · 𝑌))) |
31 | 3, 9, 27, 10, 30 | syl13anc 1370 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ((𝐴(+g‘𝑅)(𝑁‘𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g‘𝑀)((𝑁‘𝐴) · 𝑌))) |
32 | | snlindsntor.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
33 | 5, 29, 32, 25 | grprinv 18544 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑆) → (𝐴(+g‘𝑅)(𝑁‘𝐴)) = 0 ) |
34 | 24, 19, 33 | syl2an 595 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝐴(+g‘𝑅)(𝑁‘𝐴)) = 0 ) |
35 | 34 | oveq1d 7270 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ((𝐴(+g‘𝑅)(𝑁‘𝐴)) · 𝑌) = ( 0 · 𝑌)) |
36 | | snlindsntor.z |
. . . . . . . 8
⊢ 𝑍 = (0g‘𝑀) |
37 | 11, 4, 12, 32, 36 | lmod0vs 20071 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑌 ∈ 𝐵) → ( 0 · 𝑌) = 𝑍) |
38 | 37 | 3ad2antr2 1187 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ( 0 · 𝑌) = 𝑍) |
39 | 35, 38 | eqtrd 2778 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ((𝐴(+g‘𝑅)(𝑁‘𝐴)) · 𝑌) = 𝑍) |
40 | 23, 31, 39 | 3eqtr2d 2784 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → ((( 1 (.r‘𝑅)𝐴) · 𝑌)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍) |
41 | 17, 40 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (( 1 · (𝐴 · 𝑌))(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍) |
42 | 2, 41 | sylan9eqr 2801 |
. 2
⊢ (((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) ∧ 𝑋 = (𝐴 · 𝑌)) → (( 1 · 𝑋)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍) |
43 | 42 | ex 412 |
1
⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍)) |