Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsprlem Structured version   Visualization version   GIF version

Theorem ldepsprlem 45701
Description: Lemma for ldepspr 45702. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
ldepsprlem.1 1 = (1r𝑅)
ldepsprlem.n 𝑁 = (invg𝑅)
Assertion
Ref Expression
ldepsprlem ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍))

Proof of Theorem ldepsprlem
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑋 = (𝐴 · 𝑌) → ( 1 · 𝑋) = ( 1 · (𝐴 · 𝑌)))
21oveq1d 7270 . . 3 (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)))
3 simpl 482 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝑀 ∈ LMod)
4 snlindsntor.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
5 snlindsntor.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
6 ldepsprlem.1 . . . . . . . . 9 1 = (1r𝑅)
74, 5, 6lmod1cl 20065 . . . . . . . 8 (𝑀 ∈ LMod → 1𝑆)
87adantr 480 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 1𝑆)
9 simpr3 1194 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝐴𝑆)
10 simpr2 1193 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝑌𝐵)
11 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
12 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
13 eqid 2738 . . . . . . . 8 (.r𝑅) = (.r𝑅)
1411, 4, 12, 5, 13lmodvsass 20063 . . . . . . 7 ((𝑀 ∈ LMod ∧ ( 1𝑆𝐴𝑆𝑌𝐵)) → (( 1 (.r𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌)))
153, 8, 9, 10, 14syl13anc 1370 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 (.r𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌)))
1615eqcomd 2744 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 1 · (𝐴 · 𝑌)) = (( 1 (.r𝑅)𝐴) · 𝑌))
1716oveq1d 7270 . . . 4 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)) = ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
184lmodring 20046 . . . . . . . 8 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
19 simp3 1136 . . . . . . . 8 ((𝑋𝐵𝑌𝐵𝐴𝑆) → 𝐴𝑆)
205, 13, 6ringlidm 19725 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑆) → ( 1 (.r𝑅)𝐴) = 𝐴)
2118, 19, 20syl2an 595 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 1 (.r𝑅)𝐴) = 𝐴)
2221oveq1d 7270 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 (.r𝑅)𝐴) · 𝑌) = (𝐴 · 𝑌))
2322oveq1d 7270 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
244lmodfgrp 20047 . . . . . . 7 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
25 ldepsprlem.n . . . . . . . 8 𝑁 = (invg𝑅)
265, 25grpinvcl 18542 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → (𝑁𝐴) ∈ 𝑆)
2724, 19, 26syl2an 595 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑁𝐴) ∈ 𝑆)
28 eqid 2738 . . . . . . 7 (+g𝑀) = (+g𝑀)
29 eqid 2738 . . . . . . 7 (+g𝑅) = (+g𝑅)
3011, 28, 4, 12, 5, 29lmodvsdir 20062 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐴𝑆 ∧ (𝑁𝐴) ∈ 𝑆𝑌𝐵)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
313, 9, 27, 10, 30syl13anc 1370 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
32 snlindsntor.0 . . . . . . . . 9 0 = (0g𝑅)
335, 29, 32, 25grprinv 18544 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → (𝐴(+g𝑅)(𝑁𝐴)) = 0 )
3424, 19, 33syl2an 595 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝐴(+g𝑅)(𝑁𝐴)) = 0 )
3534oveq1d 7270 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ( 0 · 𝑌))
36 snlindsntor.z . . . . . . . 8 𝑍 = (0g𝑀)
3711, 4, 12, 32, 36lmod0vs 20071 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ( 0 · 𝑌) = 𝑍)
38373ad2antr2 1187 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 0 · 𝑌) = 𝑍)
3935, 38eqtrd 2778 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = 𝑍)
4023, 31, 393eqtr2d 2784 . . . 4 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
4117, 40eqtrd 2778 . . 3 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
422, 41sylan9eqr 2801 . 2 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) ∧ 𝑋 = (𝐴 · 𝑌)) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
4342ex 412 1 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  1rcur 19652  Ringcrg 19698  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040
This theorem is referenced by:  ldepspr  45702
  Copyright terms: Public domain W3C validator