Proof of Theorem dvrcan5
Step | Hyp | Ref
| Expression |
1 | | dvrcan5.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
2 | | dvrcan5.o |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑅) |
3 | 1, 2 | unitss 19902 |
. . . . . 6
⊢ 𝑈 ⊆ 𝐵 |
4 | | simpr3 1195 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝑈) |
5 | 3, 4 | sselid 3919 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝐵) |
6 | | dvrcan5.t |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
7 | 2, 6 | unitmulcl 19906 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈) → (𝑌 · 𝑍) ∈ 𝑈) |
8 | 7 | 3adant3r1 1181 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → (𝑌 · 𝑍) ∈ 𝑈) |
9 | | eqid 2738 |
. . . . . 6
⊢
(invr‘𝑅) = (invr‘𝑅) |
10 | | dvrcan5.d |
. . . . . 6
⊢ / =
(/r‘𝑅) |
11 | 1, 6, 2, 9, 10 | dvrval 19927 |
. . . . 5
⊢ ((𝑍 ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 ·
((invr‘𝑅)‘(𝑌 · 𝑍)))) |
12 | 5, 8, 11 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 ·
((invr‘𝑅)‘(𝑌 · 𝑍)))) |
13 | | simpl 483 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Ring) |
14 | | eqid 2738 |
. . . . . . 7
⊢
((mulGrp‘𝑅)
↾s 𝑈) =
((mulGrp‘𝑅)
↾s 𝑈) |
15 | 2, 14 | unitgrp 19909 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp) |
16 | 13, 15 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
17 | | simpr2 1194 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → 𝑌 ∈ 𝑈) |
18 | 2, 14 | unitgrpbas 19908 |
. . . . . . 7
⊢ 𝑈 =
(Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
19 | 2 | fvexi 6788 |
. . . . . . . 8
⊢ 𝑈 ∈ V |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
21 | 20, 6 | mgpplusg 19724 |
. . . . . . . . 9
⊢ · =
(+g‘(mulGrp‘𝑅)) |
22 | 14, 21 | ressplusg 17000 |
. . . . . . . 8
⊢ (𝑈 ∈ V → · =
(+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
23 | 19, 22 | ax-mp 5 |
. . . . . . 7
⊢ · =
(+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
24 | 2, 14, 9 | invrfval 19915 |
. . . . . . 7
⊢
(invr‘𝑅) =
(invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
25 | 18, 23, 24 | grpinvadd 18653 |
. . . . . 6
⊢
((((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp ∧ 𝑌 ∈
𝑈 ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘(𝑌 · 𝑍)) = (((invr‘𝑅)‘𝑍) ·
((invr‘𝑅)‘𝑌))) |
26 | 25 | oveq2d 7291 |
. . . . 5
⊢
((((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp ∧ 𝑌 ∈
𝑈 ∧ 𝑍 ∈ 𝑈) → (𝑍 ·
((invr‘𝑅)‘(𝑌 · 𝑍))) = (𝑍 ·
(((invr‘𝑅)‘𝑍) ·
((invr‘𝑅)‘𝑌)))) |
27 | 16, 17, 4, 26 | syl3anc 1370 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → (𝑍 ·
((invr‘𝑅)‘(𝑌 · 𝑍))) = (𝑍 ·
(((invr‘𝑅)‘𝑍) ·
((invr‘𝑅)‘𝑌)))) |
28 | | eqid 2738 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
29 | 2, 9, 6, 28 | unitrinv 19920 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → (𝑍 ·
((invr‘𝑅)‘𝑍)) = (1r‘𝑅)) |
30 | 29 | oveq1d 7290 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((𝑍 ·
((invr‘𝑅)‘𝑍)) ·
((invr‘𝑅)‘𝑌)) = ((1r‘𝑅) ·
((invr‘𝑅)‘𝑌))) |
31 | 30 | 3ad2antr3 1189 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((𝑍 ·
((invr‘𝑅)‘𝑍)) ·
((invr‘𝑅)‘𝑌)) = ((1r‘𝑅) ·
((invr‘𝑅)‘𝑌))) |
32 | 2, 9 | unitinvcl 19916 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
33 | 32 | 3ad2antr3 1189 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
34 | 3, 33 | sselid 3919 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
35 | 2, 9 | unitinvcl 19916 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
36 | 35 | 3ad2antr2 1188 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
37 | 3, 36 | sselid 3919 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
38 | 1, 6 | ringass 19803 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑍 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑍) ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵)) → ((𝑍 ·
((invr‘𝑅)‘𝑍)) ·
((invr‘𝑅)‘𝑌)) = (𝑍 ·
(((invr‘𝑅)‘𝑍) ·
((invr‘𝑅)‘𝑌)))) |
39 | 13, 5, 34, 37, 38 | syl13anc 1371 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((𝑍 ·
((invr‘𝑅)‘𝑍)) ·
((invr‘𝑅)‘𝑌)) = (𝑍 ·
(((invr‘𝑅)‘𝑍) ·
((invr‘𝑅)‘𝑌)))) |
40 | 1, 6, 28 | ringlidm 19810 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
((invr‘𝑅)‘𝑌) ∈ 𝐵) → ((1r‘𝑅) ·
((invr‘𝑅)‘𝑌)) = ((invr‘𝑅)‘𝑌)) |
41 | 13, 37, 40 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((1r‘𝑅) ·
((invr‘𝑅)‘𝑌)) = ((invr‘𝑅)‘𝑌)) |
42 | 31, 39, 41 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → (𝑍 ·
(((invr‘𝑅)‘𝑍) ·
((invr‘𝑅)‘𝑌))) = ((invr‘𝑅)‘𝑌)) |
43 | 12, 27, 42 | 3eqtrd 2782 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → (𝑍 / (𝑌 · 𝑍)) = ((invr‘𝑅)‘𝑌)) |
44 | 43 | oveq2d 7291 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → (𝑋 · (𝑍 / (𝑌 · 𝑍))) = (𝑋 ·
((invr‘𝑅)‘𝑌))) |
45 | | simpr1 1193 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → 𝑋 ∈ 𝐵) |
46 | 1, 2, 10, 6 | dvrass 19932 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍)))) |
47 | 13, 45, 5, 8, 46 | syl13anc 1371 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍)))) |
48 | 1, 6, 2, 9, 10 | dvrval 19927 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 ·
((invr‘𝑅)‘𝑌))) |
49 | 45, 17, 48 | syl2anc 584 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → (𝑋 / 𝑌) = (𝑋 ·
((invr‘𝑅)‘𝑌))) |
50 | 44, 47, 49 | 3eqtr4d 2788 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌)) |