Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrcan5 Structured version   Visualization version   GIF version

Theorem dvrcan5 30261
Description: Cancellation law for common factor in ratio. (divcan5 10985 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.)
Hypotheses
Ref Expression
dvrcan5.b 𝐵 = (Base‘𝑅)
dvrcan5.o 𝑈 = (Unit‘𝑅)
dvrcan5.d / = (/r𝑅)
dvrcan5.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))

Proof of Theorem dvrcan5
StepHypRef Expression
1 dvrcan5.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 dvrcan5.o . . . . . . 7 𝑈 = (Unit‘𝑅)
31, 2unitss 18941 . . . . . 6 𝑈𝐵
4 simpr3 1252 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝑈)
53, 4sseldi 3761 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝐵)
6 dvrcan5.t . . . . . . 7 · = (.r𝑅)
72, 6unitmulcl 18945 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑍𝑈) → (𝑌 · 𝑍) ∈ 𝑈)
873adant3r1 1233 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑌 · 𝑍) ∈ 𝑈)
9 eqid 2765 . . . . . 6 (invr𝑅) = (invr𝑅)
10 dvrcan5.d . . . . . 6 / = (/r𝑅)
111, 6, 2, 9, 10dvrval 18966 . . . . 5 ((𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
125, 8, 11syl2anc 579 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
13 simpl 474 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑅 ∈ Ring)
14 eqid 2765 . . . . . . 7 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
152, 14unitgrp 18948 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
1613, 15syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
17 simpr2 1250 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑌𝑈)
182, 14unitgrpbas 18947 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
192fvexi 6393 . . . . . . . 8 𝑈 ∈ V
20 eqid 2765 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2120, 6mgpplusg 18774 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
2214, 21ressplusg 16279 . . . . . . . 8 (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
2319, 22ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
242, 14, 9invrfval 18954 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
2518, 23, 24grpinvadd 17774 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → ((invr𝑅)‘(𝑌 · 𝑍)) = (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌)))
2625oveq2d 6862 . . . . 5 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
2716, 17, 4, 26syl3anc 1490 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
28 eqid 2765 . . . . . . . 8 (1r𝑅) = (1r𝑅)
292, 9, 6, 28unitrinv 18959 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → (𝑍 · ((invr𝑅)‘𝑍)) = (1r𝑅))
3029oveq1d 6861 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
31303ad2antr3 1241 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
322, 9unitinvcl 18955 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
33323ad2antr3 1241 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
343, 33sseldi 3761 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
352, 9unitinvcl 18955 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
36353ad2antr2 1240 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝑈)
373, 36sseldi 3761 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝐵)
381, 6ringass 18845 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑍𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
3913, 5, 34, 37, 38syl13anc 1491 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
401, 6, 28ringlidm 18852 . . . . . 6 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4113, 37, 40syl2anc 579 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4231, 39, 413eqtr3d 2807 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))) = ((invr𝑅)‘𝑌))
4312, 27, 423eqtrd 2803 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = ((invr𝑅)‘𝑌))
4443oveq2d 6862 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 · (𝑍 / (𝑌 · 𝑍))) = (𝑋 · ((invr𝑅)‘𝑌)))
45 simpr1 1248 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑋𝐵)
461, 2, 10, 6dvrass 18971 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
4713, 45, 5, 8, 46syl13anc 1491 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
481, 6, 2, 9, 10dvrval 18966 . . 3 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
4945, 17, 48syl2anc 579 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
5044, 47, 493eqtr4d 2809 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  cfv 6070  (class class class)co 6846  Basecbs 16144  s cress 16145  +gcplusg 16228  .rcmulr 16229  Grpcgrp 17703  mulGrpcmgp 18770  1rcur 18782  Ringcrg 18828  Unitcui 18920  invrcinvr 18952  /rcdvr 18963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-tpos 7559  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-2 11339  df-3 11340  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-0g 16382  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-grp 17706  df-minusg 17707  df-mgp 18771  df-ur 18783  df-ring 18830  df-oppr 18904  df-dvdsr 18922  df-unit 18923  df-invr 18953  df-dvr 18964
This theorem is referenced by:  rhmdvd  30289
  Copyright terms: Public domain W3C validator