Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrcan5 Structured version   Visualization version   GIF version

Theorem dvrcan5 31392
Description: Cancellation law for common factor in ratio. (divcan5 11607 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.)
Hypotheses
Ref Expression
dvrcan5.b 𝐵 = (Base‘𝑅)
dvrcan5.o 𝑈 = (Unit‘𝑅)
dvrcan5.d / = (/r𝑅)
dvrcan5.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))

Proof of Theorem dvrcan5
StepHypRef Expression
1 dvrcan5.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 dvrcan5.o . . . . . . 7 𝑈 = (Unit‘𝑅)
31, 2unitss 19817 . . . . . 6 𝑈𝐵
4 simpr3 1194 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝑈)
53, 4sselid 3915 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝐵)
6 dvrcan5.t . . . . . . 7 · = (.r𝑅)
72, 6unitmulcl 19821 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑍𝑈) → (𝑌 · 𝑍) ∈ 𝑈)
873adant3r1 1180 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑌 · 𝑍) ∈ 𝑈)
9 eqid 2738 . . . . . 6 (invr𝑅) = (invr𝑅)
10 dvrcan5.d . . . . . 6 / = (/r𝑅)
111, 6, 2, 9, 10dvrval 19842 . . . . 5 ((𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
125, 8, 11syl2anc 583 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
13 simpl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑅 ∈ Ring)
14 eqid 2738 . . . . . . 7 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
152, 14unitgrp 19824 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
1613, 15syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
17 simpr2 1193 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑌𝑈)
182, 14unitgrpbas 19823 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
192fvexi 6770 . . . . . . . 8 𝑈 ∈ V
20 eqid 2738 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2120, 6mgpplusg 19639 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
2214, 21ressplusg 16926 . . . . . . . 8 (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
2319, 22ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
242, 14, 9invrfval 19830 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
2518, 23, 24grpinvadd 18568 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → ((invr𝑅)‘(𝑌 · 𝑍)) = (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌)))
2625oveq2d 7271 . . . . 5 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
2716, 17, 4, 26syl3anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
28 eqid 2738 . . . . . . . 8 (1r𝑅) = (1r𝑅)
292, 9, 6, 28unitrinv 19835 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → (𝑍 · ((invr𝑅)‘𝑍)) = (1r𝑅))
3029oveq1d 7270 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
31303ad2antr3 1188 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
322, 9unitinvcl 19831 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
33323ad2antr3 1188 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
343, 33sselid 3915 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
352, 9unitinvcl 19831 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
36353ad2antr2 1187 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝑈)
373, 36sselid 3915 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝐵)
381, 6ringass 19718 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑍𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
3913, 5, 34, 37, 38syl13anc 1370 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
401, 6, 28ringlidm 19725 . . . . . 6 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4113, 37, 40syl2anc 583 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4231, 39, 413eqtr3d 2786 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))) = ((invr𝑅)‘𝑌))
4312, 27, 423eqtrd 2782 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = ((invr𝑅)‘𝑌))
4443oveq2d 7271 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 · (𝑍 / (𝑌 · 𝑍))) = (𝑋 · ((invr𝑅)‘𝑌)))
45 simpr1 1192 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑋𝐵)
461, 2, 10, 6dvrass 19847 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
4713, 45, 5, 8, 46syl13anc 1370 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
481, 6, 2, 9, 10dvrval 19842 . . 3 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
4945, 17, 48syl2anc 583 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
5044, 47, 493eqtr4d 2788 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  Grpcgrp 18492  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  /rcdvr 19839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840
This theorem is referenced by:  rhmdvd  31422
  Copyright terms: Public domain W3C validator