Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrcan5 Structured version   Visualization version   GIF version

Theorem dvrcan5 31490
Description: Cancellation law for common factor in ratio. (divcan5 11677 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.)
Hypotheses
Ref Expression
dvrcan5.b 𝐵 = (Base‘𝑅)
dvrcan5.o 𝑈 = (Unit‘𝑅)
dvrcan5.d / = (/r𝑅)
dvrcan5.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))

Proof of Theorem dvrcan5
StepHypRef Expression
1 dvrcan5.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 dvrcan5.o . . . . . . 7 𝑈 = (Unit‘𝑅)
31, 2unitss 19902 . . . . . 6 𝑈𝐵
4 simpr3 1195 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝑈)
53, 4sselid 3919 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝐵)
6 dvrcan5.t . . . . . . 7 · = (.r𝑅)
72, 6unitmulcl 19906 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑍𝑈) → (𝑌 · 𝑍) ∈ 𝑈)
873adant3r1 1181 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑌 · 𝑍) ∈ 𝑈)
9 eqid 2738 . . . . . 6 (invr𝑅) = (invr𝑅)
10 dvrcan5.d . . . . . 6 / = (/r𝑅)
111, 6, 2, 9, 10dvrval 19927 . . . . 5 ((𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
125, 8, 11syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
13 simpl 483 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑅 ∈ Ring)
14 eqid 2738 . . . . . . 7 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
152, 14unitgrp 19909 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
1613, 15syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
17 simpr2 1194 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑌𝑈)
182, 14unitgrpbas 19908 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
192fvexi 6788 . . . . . . . 8 𝑈 ∈ V
20 eqid 2738 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2120, 6mgpplusg 19724 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
2214, 21ressplusg 17000 . . . . . . . 8 (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
2319, 22ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
242, 14, 9invrfval 19915 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
2518, 23, 24grpinvadd 18653 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → ((invr𝑅)‘(𝑌 · 𝑍)) = (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌)))
2625oveq2d 7291 . . . . 5 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
2716, 17, 4, 26syl3anc 1370 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
28 eqid 2738 . . . . . . . 8 (1r𝑅) = (1r𝑅)
292, 9, 6, 28unitrinv 19920 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → (𝑍 · ((invr𝑅)‘𝑍)) = (1r𝑅))
3029oveq1d 7290 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
31303ad2antr3 1189 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
322, 9unitinvcl 19916 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
33323ad2antr3 1189 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
343, 33sselid 3919 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
352, 9unitinvcl 19916 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
36353ad2antr2 1188 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝑈)
373, 36sselid 3919 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝐵)
381, 6ringass 19803 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑍𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
3913, 5, 34, 37, 38syl13anc 1371 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
401, 6, 28ringlidm 19810 . . . . . 6 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4113, 37, 40syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4231, 39, 413eqtr3d 2786 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))) = ((invr𝑅)‘𝑌))
4312, 27, 423eqtrd 2782 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = ((invr𝑅)‘𝑌))
4443oveq2d 7291 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 · (𝑍 / (𝑌 · 𝑍))) = (𝑋 · ((invr𝑅)‘𝑌)))
45 simpr1 1193 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑋𝐵)
461, 2, 10, 6dvrass 19932 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
4713, 45, 5, 8, 46syl13anc 1371 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
481, 6, 2, 9, 10dvrval 19927 . . 3 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
4945, 17, 48syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
5044, 47, 493eqtr4d 2788 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  +gcplusg 16962  .rcmulr 16963  Grpcgrp 18577  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  Unitcui 19881  invrcinvr 19913  /rcdvr 19924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925
This theorem is referenced by:  rhmdvd  31520
  Copyright terms: Public domain W3C validator