Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrcan5 Structured version   Visualization version   GIF version

Theorem dvrcan5 30866
Description: Cancellation law for common factor in ratio. (divcan5 11344 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.)
Hypotheses
Ref Expression
dvrcan5.b 𝐵 = (Base‘𝑅)
dvrcan5.o 𝑈 = (Unit‘𝑅)
dvrcan5.d / = (/r𝑅)
dvrcan5.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))

Proof of Theorem dvrcan5
StepHypRef Expression
1 dvrcan5.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 dvrcan5.o . . . . . . 7 𝑈 = (Unit‘𝑅)
31, 2unitss 19412 . . . . . 6 𝑈𝐵
4 simpr3 1192 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝑈)
53, 4sseldi 3967 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝐵)
6 dvrcan5.t . . . . . . 7 · = (.r𝑅)
72, 6unitmulcl 19416 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑍𝑈) → (𝑌 · 𝑍) ∈ 𝑈)
873adant3r1 1178 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑌 · 𝑍) ∈ 𝑈)
9 eqid 2823 . . . . . 6 (invr𝑅) = (invr𝑅)
10 dvrcan5.d . . . . . 6 / = (/r𝑅)
111, 6, 2, 9, 10dvrval 19437 . . . . 5 ((𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
125, 8, 11syl2anc 586 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
13 simpl 485 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑅 ∈ Ring)
14 eqid 2823 . . . . . . 7 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
152, 14unitgrp 19419 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
1613, 15syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
17 simpr2 1191 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑌𝑈)
182, 14unitgrpbas 19418 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
192fvexi 6686 . . . . . . . 8 𝑈 ∈ V
20 eqid 2823 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2120, 6mgpplusg 19245 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
2214, 21ressplusg 16614 . . . . . . . 8 (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
2319, 22ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
242, 14, 9invrfval 19425 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
2518, 23, 24grpinvadd 18179 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → ((invr𝑅)‘(𝑌 · 𝑍)) = (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌)))
2625oveq2d 7174 . . . . 5 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
2716, 17, 4, 26syl3anc 1367 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
28 eqid 2823 . . . . . . . 8 (1r𝑅) = (1r𝑅)
292, 9, 6, 28unitrinv 19430 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → (𝑍 · ((invr𝑅)‘𝑍)) = (1r𝑅))
3029oveq1d 7173 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
31303ad2antr3 1186 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
322, 9unitinvcl 19426 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
33323ad2antr3 1186 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
343, 33sseldi 3967 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
352, 9unitinvcl 19426 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
36353ad2antr2 1185 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝑈)
373, 36sseldi 3967 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝐵)
381, 6ringass 19316 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑍𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
3913, 5, 34, 37, 38syl13anc 1368 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
401, 6, 28ringlidm 19323 . . . . . 6 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4113, 37, 40syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4231, 39, 413eqtr3d 2866 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))) = ((invr𝑅)‘𝑌))
4312, 27, 423eqtrd 2862 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = ((invr𝑅)‘𝑌))
4443oveq2d 7174 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 · (𝑍 / (𝑌 · 𝑍))) = (𝑋 · ((invr𝑅)‘𝑌)))
45 simpr1 1190 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑋𝐵)
461, 2, 10, 6dvrass 19442 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
4713, 45, 5, 8, 46syl13anc 1368 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
481, 6, 2, 9, 10dvrval 19437 . . 3 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
4945, 17, 48syl2anc 586 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
5044, 47, 493eqtr4d 2868 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  +gcplusg 16567  .rcmulr 16568  Grpcgrp 18105  mulGrpcmgp 19241  1rcur 19253  Ringcrg 19299  Unitcui 19391  invrcinvr 19423  /rcdvr 19434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435
This theorem is referenced by:  rhmdvd  30896
  Copyright terms: Public domain W3C validator