Proof of Theorem paddasslem17
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ianor 984 | . . . 4
⊢ (¬
((𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ (¬ (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∨ ¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠
∅))) | 
| 2 |  | ianor 984 | . . . . . 6
⊢ (¬
(𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ↔ (¬ 𝑋 ≠ ∅ ∨ ¬ (𝑌 + 𝑍) ≠ ∅)) | 
| 3 |  | nne 2944 | . . . . . . 7
⊢ (¬
𝑋 ≠ ∅ ↔ 𝑋 = ∅) | 
| 4 |  | nne 2944 | . . . . . . 7
⊢ (¬
(𝑌 + 𝑍) ≠ ∅ ↔ (𝑌 + 𝑍) = ∅) | 
| 5 | 3, 4 | orbi12i 915 | . . . . . 6
⊢ ((¬
𝑋 ≠ ∅ ∨ ¬
(𝑌 + 𝑍) ≠ ∅) ↔ (𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅)) | 
| 6 | 2, 5 | bitri 275 | . . . . 5
⊢ (¬
(𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ↔ (𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅)) | 
| 7 |  | ianor 984 | . . . . . 6
⊢ (¬
(𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅) ↔ (¬
𝑌 ≠ ∅ ∨ ¬
𝑍 ≠
∅)) | 
| 8 |  | nne 2944 | . . . . . . 7
⊢ (¬
𝑌 ≠ ∅ ↔ 𝑌 = ∅) | 
| 9 |  | nne 2944 | . . . . . . 7
⊢ (¬
𝑍 ≠ ∅ ↔ 𝑍 = ∅) | 
| 10 | 8, 9 | orbi12i 915 | . . . . . 6
⊢ ((¬
𝑌 ≠ ∅ ∨ ¬
𝑍 ≠ ∅) ↔
(𝑌 = ∅ ∨ 𝑍 = ∅)) | 
| 11 | 7, 10 | bitri 275 | . . . . 5
⊢ (¬
(𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅) ↔ (𝑌 = ∅ ∨ 𝑍 = ∅)) | 
| 12 | 6, 11 | orbi12i 915 | . . . 4
⊢ ((¬
(𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ∨ ¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅))) | 
| 13 | 1, 12 | bitri 275 | . . 3
⊢ (¬
((𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅))) | 
| 14 |  | paddass.a | . . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) | 
| 15 |  | paddass.p | . . . . . . . . . . 11
⊢  + =
(+𝑃‘𝐾) | 
| 16 | 14, 15 | paddssat 39816 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑌 + 𝑍) ⊆ 𝐴) | 
| 17 | 16 | 3adant3r1 1183 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 + 𝑍) ⊆ 𝐴) | 
| 18 | 14, 15 | padd02 39814 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑌 + 𝑍) ⊆ 𝐴) → (∅ + (𝑌 + 𝑍)) = (𝑌 + 𝑍)) | 
| 19 | 17, 18 | syldan 591 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + (𝑌 + 𝑍)) = (𝑌 + 𝑍)) | 
| 20 | 14, 15 | padd02 39814 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → (∅ + 𝑌) = 𝑌) | 
| 21 | 20 | 3ad2antr2 1190 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + 𝑌) = 𝑌) | 
| 22 | 21 | oveq1d 7446 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((∅ + 𝑌) + 𝑍) = (𝑌 + 𝑍)) | 
| 23 | 19, 22 | eqtr4d 2780 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + (𝑌 + 𝑍)) = ((∅ + 𝑌) + 𝑍)) | 
| 24 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (∅ + (𝑌 + 𝑍))) | 
| 25 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌)) | 
| 26 | 25 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑋 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((∅ + 𝑌) + 𝑍)) | 
| 27 | 24, 26 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑋 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (∅ + (𝑌 + 𝑍)) = ((∅ + 𝑌) + 𝑍))) | 
| 28 | 23, 27 | syl5ibrcom 247 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) | 
| 29 |  | eqimss 4042 | . . . . . 6
⊢ ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) | 
| 30 | 28, 29 | syl6 35 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 31 | 14, 15 | padd01 39813 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) | 
| 32 | 31 | 3ad2antr1 1189 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + ∅) = 𝑋) | 
| 33 | 14, 15 | sspadd1 39817 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) | 
| 34 | 33 | 3adant3r3 1185 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ (𝑋 + 𝑌)) | 
| 35 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝐾 ∈ HL) | 
| 36 | 14, 15 | paddssat 39816 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) | 
| 37 | 36 | 3adant3r3 1185 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + 𝑌) ⊆ 𝐴) | 
| 38 |  | simpr3 1197 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑍 ⊆ 𝐴) | 
| 39 | 14, 15 | sspadd1 39817 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ ((𝑋 + 𝑌) + 𝑍)) | 
| 40 | 35, 37, 38, 39 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + 𝑌) ⊆ ((𝑋 + 𝑌) + 𝑍)) | 
| 41 | 34, 40 | sstrd 3994 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ ((𝑋 + 𝑌) + 𝑍)) | 
| 42 | 32, 41 | eqsstrd 4018 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + ∅) ⊆ ((𝑋 + 𝑌) + 𝑍)) | 
| 43 |  | oveq2 7439 | . . . . . . 7
⊢ ((𝑌 + 𝑍) = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + ∅)) | 
| 44 | 43 | sseq1d 4015 | . . . . . 6
⊢ ((𝑌 + 𝑍) = ∅ → ((𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + ∅) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 45 | 42, 44 | syl5ibrcom 247 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 + 𝑍) = ∅ → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 46 | 30, 45 | jaod 860 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 47 | 14, 15 | padd02 39814 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴) → (∅ + 𝑍) = 𝑍) | 
| 48 | 47 | 3ad2antr3 1191 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + 𝑍) = 𝑍) | 
| 49 | 48 | oveq2d 7447 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (∅ + 𝑍)) = (𝑋 + 𝑍)) | 
| 50 | 32 | oveq1d 7446 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + ∅) + 𝑍) = (𝑋 + 𝑍)) | 
| 51 | 49, 50 | eqtr4d 2780 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (∅ + 𝑍)) = ((𝑋 + ∅) + 𝑍)) | 
| 52 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑌 = ∅ → (𝑌 + 𝑍) = (∅ + 𝑍)) | 
| 53 | 52 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑌 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (∅ + 𝑍))) | 
| 54 |  | oveq2 7439 | . . . . . . . . 9
⊢ (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅)) | 
| 55 | 54 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑌 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + ∅) + 𝑍)) | 
| 56 | 53, 55 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑌 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + (∅ + 𝑍)) = ((𝑋 + ∅) + 𝑍))) | 
| 57 | 51, 56 | syl5ibrcom 247 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) | 
| 58 | 14, 15 | padd01 39813 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → (𝑌 + ∅) = 𝑌) | 
| 59 | 58 | 3ad2antr2 1190 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 + ∅) = 𝑌) | 
| 60 | 59 | oveq2d 7447 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + ∅)) = (𝑋 + 𝑌)) | 
| 61 | 14, 15 | padd01 39813 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ((𝑋 + 𝑌) + ∅) = (𝑋 + 𝑌)) | 
| 62 | 37, 61 | syldan 591 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + ∅) = (𝑋 + 𝑌)) | 
| 63 | 60, 62 | eqtr4d 2780 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + ∅)) = ((𝑋 + 𝑌) + ∅)) | 
| 64 |  | oveq2 7439 | . . . . . . . . 9
⊢ (𝑍 = ∅ → (𝑌 + 𝑍) = (𝑌 + ∅)) | 
| 65 | 64 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑍 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑌 +
∅))) | 
| 66 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑍 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑌) + ∅)) | 
| 67 | 65, 66 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑍 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + (𝑌 + ∅)) = ((𝑋 + 𝑌) +
∅))) | 
| 68 | 63, 67 | syl5ibrcom 247 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑍 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) | 
| 69 | 57, 68 | jaod 860 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 = ∅ ∨ 𝑍 = ∅) → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) | 
| 70 | 69, 29 | syl6 35 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 = ∅ ∨ 𝑍 = ∅) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 71 | 46, 70 | jaod 860 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 72 | 13, 71 | biimtrid 242 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) | 
| 73 | 72 | 3impia 1118 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ ¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |