Proof of Theorem paddasslem17
Step | Hyp | Ref
| Expression |
1 | | ianor 978 |
. . . 4
⊢ (¬
((𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ (¬ (𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∨ ¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠
∅))) |
2 | | ianor 978 |
. . . . . 6
⊢ (¬
(𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ↔ (¬ 𝑋 ≠ ∅ ∨ ¬ (𝑌 + 𝑍) ≠ ∅)) |
3 | | nne 2948 |
. . . . . . 7
⊢ (¬
𝑋 ≠ ∅ ↔ 𝑋 = ∅) |
4 | | nne 2948 |
. . . . . . 7
⊢ (¬
(𝑌 + 𝑍) ≠ ∅ ↔ (𝑌 + 𝑍) = ∅) |
5 | 3, 4 | orbi12i 911 |
. . . . . 6
⊢ ((¬
𝑋 ≠ ∅ ∨ ¬
(𝑌 + 𝑍) ≠ ∅) ↔ (𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅)) |
6 | 2, 5 | bitri 274 |
. . . . 5
⊢ (¬
(𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ↔ (𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅)) |
7 | | ianor 978 |
. . . . . 6
⊢ (¬
(𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅) ↔ (¬
𝑌 ≠ ∅ ∨ ¬
𝑍 ≠
∅)) |
8 | | nne 2948 |
. . . . . . 7
⊢ (¬
𝑌 ≠ ∅ ↔ 𝑌 = ∅) |
9 | | nne 2948 |
. . . . . . 7
⊢ (¬
𝑍 ≠ ∅ ↔ 𝑍 = ∅) |
10 | 8, 9 | orbi12i 911 |
. . . . . 6
⊢ ((¬
𝑌 ≠ ∅ ∨ ¬
𝑍 ≠ ∅) ↔
(𝑌 = ∅ ∨ 𝑍 = ∅)) |
11 | 7, 10 | bitri 274 |
. . . . 5
⊢ (¬
(𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅) ↔ (𝑌 = ∅ ∨ 𝑍 = ∅)) |
12 | 6, 11 | orbi12i 911 |
. . . 4
⊢ ((¬
(𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ∨ ¬ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅))) |
13 | 1, 12 | bitri 274 |
. . 3
⊢ (¬
((𝑋 ≠ ∅ ∧
(𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ↔ ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅))) |
14 | | paddass.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
15 | | paddass.p |
. . . . . . . . . . 11
⊢ + =
(+𝑃‘𝐾) |
16 | 14, 15 | paddssat 37807 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑌 + 𝑍) ⊆ 𝐴) |
17 | 16 | 3adant3r1 1180 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 + 𝑍) ⊆ 𝐴) |
18 | 14, 15 | padd02 37805 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑌 + 𝑍) ⊆ 𝐴) → (∅ + (𝑌 + 𝑍)) = (𝑌 + 𝑍)) |
19 | 17, 18 | syldan 590 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + (𝑌 + 𝑍)) = (𝑌 + 𝑍)) |
20 | 14, 15 | padd02 37805 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → (∅ + 𝑌) = 𝑌) |
21 | 20 | 3ad2antr2 1187 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + 𝑌) = 𝑌) |
22 | 21 | oveq1d 7283 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((∅ + 𝑌) + 𝑍) = (𝑌 + 𝑍)) |
23 | 19, 22 | eqtr4d 2782 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + (𝑌 + 𝑍)) = ((∅ + 𝑌) + 𝑍)) |
24 | | oveq1 7275 |
. . . . . . . 8
⊢ (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (∅ + (𝑌 + 𝑍))) |
25 | | oveq1 7275 |
. . . . . . . . 9
⊢ (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌)) |
26 | 25 | oveq1d 7283 |
. . . . . . . 8
⊢ (𝑋 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((∅ + 𝑌) + 𝑍)) |
27 | 24, 26 | eqeq12d 2755 |
. . . . . . 7
⊢ (𝑋 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (∅ + (𝑌 + 𝑍)) = ((∅ + 𝑌) + 𝑍))) |
28 | 23, 27 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) |
29 | | eqimss 3981 |
. . . . . 6
⊢ ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
30 | 28, 29 | syl6 35 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 = ∅ → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) |
31 | 14, 15 | padd01 37804 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) |
32 | 31 | 3ad2antr1 1186 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + ∅) = 𝑋) |
33 | 14, 15 | sspadd1 37808 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + 𝑌)) |
34 | 33 | 3adant3r3 1182 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ (𝑋 + 𝑌)) |
35 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝐾 ∈ HL) |
36 | 14, 15 | paddssat 37807 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ 𝐴) |
37 | 36 | 3adant3r3 1182 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + 𝑌) ⊆ 𝐴) |
38 | | simpr3 1194 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑍 ⊆ 𝐴) |
39 | 14, 15 | sspadd1 37808 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → (𝑋 + 𝑌) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
40 | 35, 37, 38, 39 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + 𝑌) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
41 | 34, 40 | sstrd 3935 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → 𝑋 ⊆ ((𝑋 + 𝑌) + 𝑍)) |
42 | 32, 41 | eqsstrd 3963 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + ∅) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
43 | | oveq2 7276 |
. . . . . . 7
⊢ ((𝑌 + 𝑍) = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + ∅)) |
44 | 43 | sseq1d 3956 |
. . . . . 6
⊢ ((𝑌 + 𝑍) = ∅ → ((𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + ∅) ⊆ ((𝑋 + 𝑌) + 𝑍))) |
45 | 42, 44 | syl5ibrcom 246 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 + 𝑍) = ∅ → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) |
46 | 30, 45 | jaod 855 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) |
47 | 14, 15 | padd02 37805 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴) → (∅ + 𝑍) = 𝑍) |
48 | 47 | 3ad2antr3 1188 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (∅ + 𝑍) = 𝑍) |
49 | 48 | oveq2d 7284 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (∅ + 𝑍)) = (𝑋 + 𝑍)) |
50 | 32 | oveq1d 7283 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + ∅) + 𝑍) = (𝑋 + 𝑍)) |
51 | 49, 50 | eqtr4d 2782 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (∅ + 𝑍)) = ((𝑋 + ∅) + 𝑍)) |
52 | | oveq1 7275 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝑌 + 𝑍) = (∅ + 𝑍)) |
53 | 52 | oveq2d 7284 |
. . . . . . . 8
⊢ (𝑌 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (∅ + 𝑍))) |
54 | | oveq2 7276 |
. . . . . . . . 9
⊢ (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅)) |
55 | 54 | oveq1d 7283 |
. . . . . . . 8
⊢ (𝑌 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + ∅) + 𝑍)) |
56 | 53, 55 | eqeq12d 2755 |
. . . . . . 7
⊢ (𝑌 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + (∅ + 𝑍)) = ((𝑋 + ∅) + 𝑍))) |
57 | 51, 56 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) |
58 | 14, 15 | padd01 37804 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → (𝑌 + ∅) = 𝑌) |
59 | 58 | 3ad2antr2 1187 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑌 + ∅) = 𝑌) |
60 | 59 | oveq2d 7284 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + ∅)) = (𝑋 + 𝑌)) |
61 | 14, 15 | padd01 37804 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ((𝑋 + 𝑌) + ∅) = (𝑋 + 𝑌)) |
62 | 37, 61 | syldan 590 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + ∅) = (𝑋 + 𝑌)) |
63 | 60, 62 | eqtr4d 2782 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + ∅)) = ((𝑋 + 𝑌) + ∅)) |
64 | | oveq2 7276 |
. . . . . . . . 9
⊢ (𝑍 = ∅ → (𝑌 + 𝑍) = (𝑌 + ∅)) |
65 | 64 | oveq2d 7284 |
. . . . . . . 8
⊢ (𝑍 = ∅ → (𝑋 + (𝑌 + 𝑍)) = (𝑋 + (𝑌 +
∅))) |
66 | | oveq2 7276 |
. . . . . . . 8
⊢ (𝑍 = ∅ → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑌) + ∅)) |
67 | 65, 66 | eqeq12d 2755 |
. . . . . . 7
⊢ (𝑍 = ∅ → ((𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍) ↔ (𝑋 + (𝑌 + ∅)) = ((𝑋 + 𝑌) +
∅))) |
68 | 63, 67 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑍 = ∅ → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) |
69 | 57, 68 | jaod 855 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 = ∅ ∨ 𝑍 = ∅) → (𝑋 + (𝑌 + 𝑍)) = ((𝑋 + 𝑌) + 𝑍))) |
70 | 69, 29 | syl6 35 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑌 = ∅ ∨ 𝑍 = ∅) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) |
71 | 46, 70 | jaod 855 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (((𝑋 = ∅ ∨ (𝑌 + 𝑍) = ∅) ∨ (𝑌 = ∅ ∨ 𝑍 = ∅)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) |
72 | 13, 71 | syl5bi 241 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍))) |
73 | 72 | 3impia 1115 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ ¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |