MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12244
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12243 . 2 3 ∈ ℂ
21elexi 3467 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  cc 11042  3c3 12218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-2 12225  df-3 12226
This theorem is referenced by:  fztpval  13523  funcnvs4  14857  iblcnlem1  25665  basellem9  26975  lgsdir2lem3  27214  axlowdimlem7  28851  axlowdimlem8  28852  axlowdimlem9  28853  axlowdimlem13  28857  3wlkdlem4  30064  3pthdlem1  30066  upgr4cycl4dv4e  30087  konigsberglem4  30157  konigsberglem5  30158  ex-pss  30330  ex-fv  30345  ex-1st  30346  ex-2nd  30347  rabren3dioph  42776  lhe4.4ex1a  44291  nnsum4primesodd  47770  nnsum4primesoddALTV  47771  usgrexmpl1lem  47985  usgrexmpl2lem  47990  usgrexmpl2nb0  47995  usgrexmpl2nb1  47996  usgrexmpl2nb2  47997  usgrexmpl2nb3  47998  usgrexmpl2nb4  47999  usgrexmpl2trifr  48001  zlmodzxzldeplem  48460
  Copyright terms: Public domain W3C validator