MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12346
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12345 . 2 3 ∈ ℂ
21elexi 3501 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  cc 11151  3c3 12320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-2 12327  df-3 12328
This theorem is referenced by:  fztpval  13623  funcnvs4  14951  iblcnlem1  25838  basellem9  27147  lgsdir2lem3  27386  axlowdimlem7  28978  axlowdimlem8  28979  axlowdimlem9  28980  axlowdimlem13  28984  3wlkdlem4  30191  3pthdlem1  30193  upgr4cycl4dv4e  30214  konigsberglem4  30284  konigsberglem5  30285  ex-pss  30457  ex-fv  30472  ex-1st  30473  ex-2nd  30474  rabren3dioph  42803  lhe4.4ex1a  44325  nnsum4primesodd  47721  nnsum4primesoddALTV  47722  usgrexmpl1lem  47916  usgrexmpl2lem  47921  usgrexmpl2nb0  47926  usgrexmpl2nb1  47927  usgrexmpl2nb2  47928  usgrexmpl2nb3  47929  usgrexmpl2nb4  47930  usgrexmpl2trifr  47932  zlmodzxzldeplem  48344
  Copyright terms: Public domain W3C validator