MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12322
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12321 . 2 3 ∈ ℂ
21elexi 3482 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3459  cc 11127  3c3 12296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-2 12303  df-3 12304
This theorem is referenced by:  fztpval  13603  funcnvs4  14934  iblcnlem1  25741  basellem9  27051  lgsdir2lem3  27290  axlowdimlem7  28927  axlowdimlem8  28928  axlowdimlem9  28929  axlowdimlem13  28933  3wlkdlem4  30143  3pthdlem1  30145  upgr4cycl4dv4e  30166  konigsberglem4  30236  konigsberglem5  30237  ex-pss  30409  ex-fv  30424  ex-1st  30425  ex-2nd  30426  rabren3dioph  42838  lhe4.4ex1a  44353  nnsum4primesodd  47810  nnsum4primesoddALTV  47811  usgrexmpl1lem  48025  usgrexmpl2lem  48030  usgrexmpl2nb0  48035  usgrexmpl2nb1  48036  usgrexmpl2nb2  48037  usgrexmpl2nb3  48038  usgrexmpl2nb4  48039  usgrexmpl2trifr  48041  zlmodzxzldeplem  48474
  Copyright terms: Public domain W3C validator