| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version | ||
| Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3ex | ⊢ 3 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12321 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | elexi 3482 | 1 ⊢ 3 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ℂcc 11127 3c3 12296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-2 12303 df-3 12304 |
| This theorem is referenced by: fztpval 13603 funcnvs4 14934 iblcnlem1 25741 basellem9 27051 lgsdir2lem3 27290 axlowdimlem7 28927 axlowdimlem8 28928 axlowdimlem9 28929 axlowdimlem13 28933 3wlkdlem4 30143 3pthdlem1 30145 upgr4cycl4dv4e 30166 konigsberglem4 30236 konigsberglem5 30237 ex-pss 30409 ex-fv 30424 ex-1st 30425 ex-2nd 30426 rabren3dioph 42838 lhe4.4ex1a 44353 nnsum4primesodd 47810 nnsum4primesoddALTV 47811 usgrexmpl1lem 48025 usgrexmpl2lem 48030 usgrexmpl2nb0 48035 usgrexmpl2nb1 48036 usgrexmpl2nb2 48037 usgrexmpl2nb3 48038 usgrexmpl2nb4 48039 usgrexmpl2trifr 48041 zlmodzxzldeplem 48474 |
| Copyright terms: Public domain | W3C validator |