MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12375
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12374 . 2 3 ∈ ℂ
21elexi 3511 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  cc 11182  3c3 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-2 12356  df-3 12357
This theorem is referenced by:  fztpval  13646  funcnvs4  14964  iblcnlem1  25843  basellem9  27150  lgsdir2lem3  27389  axlowdimlem7  28981  axlowdimlem8  28982  axlowdimlem9  28983  axlowdimlem13  28987  3wlkdlem4  30194  3pthdlem1  30196  upgr4cycl4dv4e  30217  konigsberglem4  30287  konigsberglem5  30288  ex-pss  30460  ex-fv  30475  ex-1st  30476  ex-2nd  30477  rabren3dioph  42771  lhe4.4ex1a  44298  nnsum4primesodd  47670  nnsum4primesoddALTV  47671  usgrexmpl1lem  47836  usgrexmpl2lem  47841  usgrexmpl2nb0  47846  usgrexmpl2nb1  47847  usgrexmpl2nb2  47848  usgrexmpl2nb3  47849  usgrexmpl2nb4  47850  usgrexmpl2trifr  47852  zlmodzxzldeplem  48227
  Copyright terms: Public domain W3C validator