| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version | ||
| Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3ex | ⊢ 3 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12274 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | elexi 3473 | 1 ⊢ 3 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ℂcc 11073 3c3 12249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-2 12256 df-3 12257 |
| This theorem is referenced by: fztpval 13554 funcnvs4 14888 iblcnlem1 25696 basellem9 27006 lgsdir2lem3 27245 axlowdimlem7 28882 axlowdimlem8 28883 axlowdimlem9 28884 axlowdimlem13 28888 3wlkdlem4 30098 3pthdlem1 30100 upgr4cycl4dv4e 30121 konigsberglem4 30191 konigsberglem5 30192 ex-pss 30364 ex-fv 30379 ex-1st 30380 ex-2nd 30381 rabren3dioph 42810 lhe4.4ex1a 44325 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 usgrexmpl1lem 48016 usgrexmpl2lem 48021 usgrexmpl2nb0 48026 usgrexmpl2nb1 48027 usgrexmpl2nb2 48028 usgrexmpl2nb3 48029 usgrexmpl2nb4 48030 usgrexmpl2trifr 48032 zlmodzxzldeplem 48491 |
| Copyright terms: Public domain | W3C validator |