| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version | ||
| Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3ex | ⊢ 3 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12217 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | elexi 3460 | 1 ⊢ 3 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ℂcc 11015 3c3 12192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-1cn 11075 ax-addcl 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-2 12199 df-3 12200 |
| This theorem is referenced by: fztpval 13493 funcnvs4 14829 iblcnlem1 25736 basellem9 27046 lgsdir2lem3 27285 axlowdimlem7 28947 axlowdimlem8 28948 axlowdimlem9 28949 axlowdimlem13 28953 3wlkdlem4 30163 3pthdlem1 30165 upgr4cycl4dv4e 30186 konigsberglem4 30256 konigsberglem5 30257 ex-pss 30429 ex-fv 30444 ex-1st 30445 ex-2nd 30446 rabren3dioph 42972 lhe4.4ex1a 44486 nnsum4primesodd 47958 nnsum4primesoddALTV 47959 usgrexmpl1lem 48183 usgrexmpl2lem 48188 usgrexmpl2nb0 48193 usgrexmpl2nb1 48194 usgrexmpl2nb2 48195 usgrexmpl2nb3 48196 usgrexmpl2nb4 48197 usgrexmpl2trifr 48199 zlmodzxzldeplem 48660 |
| Copyright terms: Public domain | W3C validator |