| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version | ||
| Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3ex | ⊢ 3 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12201 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | elexi 3459 | 1 ⊢ 3 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ℂcc 10999 3c3 12176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-2 12183 df-3 12184 |
| This theorem is referenced by: fztpval 13481 funcnvs4 14817 iblcnlem1 25711 basellem9 27021 lgsdir2lem3 27260 axlowdimlem7 28921 axlowdimlem8 28922 axlowdimlem9 28923 axlowdimlem13 28927 3wlkdlem4 30134 3pthdlem1 30136 upgr4cycl4dv4e 30157 konigsberglem4 30227 konigsberglem5 30228 ex-pss 30400 ex-fv 30415 ex-1st 30416 ex-2nd 30417 rabren3dioph 42848 lhe4.4ex1a 44362 nnsum4primesodd 47827 nnsum4primesoddALTV 47828 usgrexmpl1lem 48052 usgrexmpl2lem 48057 usgrexmpl2nb0 48062 usgrexmpl2nb1 48063 usgrexmpl2nb2 48064 usgrexmpl2nb3 48065 usgrexmpl2nb4 48066 usgrexmpl2trifr 48068 zlmodzxzldeplem 48530 |
| Copyright terms: Public domain | W3C validator |