MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 11985
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 11984 . 2 3 ∈ ℂ
21elexi 3441 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422  cc 10800  3c3 11959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-2 11966  df-3 11967
This theorem is referenced by:  fztpval  13247  funcnvs4  14556  iblcnlem1  24857  basellem9  26143  lgsdir2lem3  26380  axlowdimlem7  27219  axlowdimlem8  27220  axlowdimlem9  27221  axlowdimlem13  27225  3wlkdlem4  28427  3pthdlem1  28429  upgr4cycl4dv4e  28450  konigsberglem4  28520  konigsberglem5  28521  ex-pss  28693  ex-fv  28708  ex-1st  28709  ex-2nd  28710  rabren3dioph  40553  lhe4.4ex1a  41836  nnsum4primesodd  45136  nnsum4primesoddALTV  45137  zlmodzxzldeplem  45727
  Copyright terms: Public domain W3C validator