| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version | ||
| Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3ex | ⊢ 3 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12228 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | elexi 3461 | 1 ⊢ 3 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ℂcc 11026 3c3 12203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-2 12210 df-3 12211 |
| This theorem is referenced by: fztpval 13508 funcnvs4 14841 iblcnlem1 25706 basellem9 27016 lgsdir2lem3 27255 axlowdimlem7 28912 axlowdimlem8 28913 axlowdimlem9 28914 axlowdimlem13 28918 3wlkdlem4 30125 3pthdlem1 30127 upgr4cycl4dv4e 30148 konigsberglem4 30218 konigsberglem5 30219 ex-pss 30391 ex-fv 30406 ex-1st 30407 ex-2nd 30408 rabren3dioph 42808 lhe4.4ex1a 44322 nnsum4primesodd 47800 nnsum4primesoddALTV 47801 usgrexmpl1lem 48025 usgrexmpl2lem 48030 usgrexmpl2nb0 48035 usgrexmpl2nb1 48036 usgrexmpl2nb2 48037 usgrexmpl2nb3 48038 usgrexmpl2nb4 48039 usgrexmpl2trifr 48041 zlmodzxzldeplem 48503 |
| Copyright terms: Public domain | W3C validator |