MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12268
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12267 . 2 3 ∈ ℂ
21elexi 3470 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  cc 11066  3c3 12242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-2 12249  df-3 12250
This theorem is referenced by:  fztpval  13547  funcnvs4  14881  iblcnlem1  25689  basellem9  26999  lgsdir2lem3  27238  axlowdimlem7  28875  axlowdimlem8  28876  axlowdimlem9  28877  axlowdimlem13  28881  3wlkdlem4  30091  3pthdlem1  30093  upgr4cycl4dv4e  30114  konigsberglem4  30184  konigsberglem5  30185  ex-pss  30357  ex-fv  30372  ex-1st  30373  ex-2nd  30374  rabren3dioph  42803  lhe4.4ex1a  44318  nnsum4primesodd  47797  nnsum4primesoddALTV  47798  usgrexmpl1lem  48012  usgrexmpl2lem  48017  usgrexmpl2nb0  48022  usgrexmpl2nb1  48023  usgrexmpl2nb2  48024  usgrexmpl2nb3  48025  usgrexmpl2nb4  48026  usgrexmpl2trifr  48028  zlmodzxzldeplem  48487
  Copyright terms: Public domain W3C validator