Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version |
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
3ex | ⊢ 3 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 11984 | . 2 ⊢ 3 ∈ ℂ | |
2 | 1 | elexi 3441 | 1 ⊢ 3 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ℂcc 10800 3c3 11959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-2 11966 df-3 11967 |
This theorem is referenced by: fztpval 13247 funcnvs4 14556 iblcnlem1 24857 basellem9 26143 lgsdir2lem3 26380 axlowdimlem7 27219 axlowdimlem8 27220 axlowdimlem9 27221 axlowdimlem13 27225 3wlkdlem4 28427 3pthdlem1 28429 upgr4cycl4dv4e 28450 konigsberglem4 28520 konigsberglem5 28521 ex-pss 28693 ex-fv 28708 ex-1st 28709 ex-2nd 28710 rabren3dioph 40553 lhe4.4ex1a 41836 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 zlmodzxzldeplem 45727 |
Copyright terms: Public domain | W3C validator |