MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12348
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12347 . 2 3 ∈ ℂ
21elexi 3503 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3480  cc 11153  3c3 12322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-2 12329  df-3 12330
This theorem is referenced by:  fztpval  13626  funcnvs4  14954  iblcnlem1  25823  basellem9  27132  lgsdir2lem3  27371  axlowdimlem7  28963  axlowdimlem8  28964  axlowdimlem9  28965  axlowdimlem13  28969  3wlkdlem4  30181  3pthdlem1  30183  upgr4cycl4dv4e  30204  konigsberglem4  30274  konigsberglem5  30275  ex-pss  30447  ex-fv  30462  ex-1st  30463  ex-2nd  30464  rabren3dioph  42826  lhe4.4ex1a  44348  nnsum4primesodd  47783  nnsum4primesoddALTV  47784  usgrexmpl1lem  47980  usgrexmpl2lem  47985  usgrexmpl2nb0  47990  usgrexmpl2nb1  47991  usgrexmpl2nb2  47992  usgrexmpl2nb3  47993  usgrexmpl2nb4  47994  usgrexmpl2trifr  47996  zlmodzxzldeplem  48415
  Copyright terms: Public domain W3C validator