![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version |
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
3ex | ⊢ 3 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 12374 | . 2 ⊢ 3 ∈ ℂ | |
2 | 1 | elexi 3511 | 1 ⊢ 3 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ℂcc 11182 3c3 12349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-2 12356 df-3 12357 |
This theorem is referenced by: fztpval 13646 funcnvs4 14964 iblcnlem1 25843 basellem9 27150 lgsdir2lem3 27389 axlowdimlem7 28981 axlowdimlem8 28982 axlowdimlem9 28983 axlowdimlem13 28987 3wlkdlem4 30194 3pthdlem1 30196 upgr4cycl4dv4e 30217 konigsberglem4 30287 konigsberglem5 30288 ex-pss 30460 ex-fv 30475 ex-1st 30476 ex-2nd 30477 rabren3dioph 42771 lhe4.4ex1a 44298 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 usgrexmpl1lem 47836 usgrexmpl2lem 47841 usgrexmpl2nb0 47846 usgrexmpl2nb1 47847 usgrexmpl2nb2 47848 usgrexmpl2nb3 47849 usgrexmpl2nb4 47850 usgrexmpl2trifr 47852 zlmodzxzldeplem 48227 |
Copyright terms: Public domain | W3C validator |