MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12275
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12274 . 2 3 ∈ ℂ
21elexi 3473 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  cc 11073  3c3 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-2 12256  df-3 12257
This theorem is referenced by:  fztpval  13554  funcnvs4  14888  iblcnlem1  25696  basellem9  27006  lgsdir2lem3  27245  axlowdimlem7  28882  axlowdimlem8  28883  axlowdimlem9  28884  axlowdimlem13  28888  3wlkdlem4  30098  3pthdlem1  30100  upgr4cycl4dv4e  30121  konigsberglem4  30191  konigsberglem5  30192  ex-pss  30364  ex-fv  30379  ex-1st  30380  ex-2nd  30381  rabren3dioph  42810  lhe4.4ex1a  44325  nnsum4primesodd  47801  nnsum4primesoddALTV  47802  usgrexmpl1lem  48016  usgrexmpl2lem  48021  usgrexmpl2nb0  48026  usgrexmpl2nb1  48027  usgrexmpl2nb2  48028  usgrexmpl2nb3  48029  usgrexmpl2nb4  48030  usgrexmpl2trifr  48032  zlmodzxzldeplem  48491
  Copyright terms: Public domain W3C validator