MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12202
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12201 . 2 3 ∈ ℂ
21elexi 3459 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cc 10999  3c3 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11059  ax-addcl 11061
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-2 12183  df-3 12184
This theorem is referenced by:  fztpval  13481  funcnvs4  14817  iblcnlem1  25711  basellem9  27021  lgsdir2lem3  27260  axlowdimlem7  28921  axlowdimlem8  28922  axlowdimlem9  28923  axlowdimlem13  28927  3wlkdlem4  30134  3pthdlem1  30136  upgr4cycl4dv4e  30157  konigsberglem4  30227  konigsberglem5  30228  ex-pss  30400  ex-fv  30415  ex-1st  30416  ex-2nd  30417  rabren3dioph  42848  lhe4.4ex1a  44362  nnsum4primesodd  47827  nnsum4primesoddALTV  47828  usgrexmpl1lem  48052  usgrexmpl2lem  48057  usgrexmpl2nb0  48062  usgrexmpl2nb1  48063  usgrexmpl2nb2  48064  usgrexmpl2nb3  48065  usgrexmpl2nb4  48066  usgrexmpl2trifr  48068  zlmodzxzldeplem  48530
  Copyright terms: Public domain W3C validator