MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12294
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12293 . 2 3 ∈ ℂ
21elexi 3494 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3475  cc 11108  3c3 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-1cn 11168  ax-addcl 11170
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-2 12275  df-3 12276
This theorem is referenced by:  fztpval  13563  funcnvs4  14866  iblcnlem1  25305  basellem9  26593  lgsdir2lem3  26830  axlowdimlem7  28206  axlowdimlem8  28207  axlowdimlem9  28208  axlowdimlem13  28212  3wlkdlem4  29415  3pthdlem1  29417  upgr4cycl4dv4e  29438  konigsberglem4  29508  konigsberglem5  29509  ex-pss  29681  ex-fv  29696  ex-1st  29697  ex-2nd  29698  rabren3dioph  41553  lhe4.4ex1a  43088  nnsum4primesodd  46464  nnsum4primesoddALTV  46465  zlmodzxzldeplem  47179
  Copyright terms: Public domain W3C validator