|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version | ||
| Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| 3ex | ⊢ 3 ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3cn 12347 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | elexi 3503 | 1 ⊢ 3 ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2108 Vcvv 3480 ℂcc 11153 3c3 12322 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-1cn 11213 ax-addcl 11215 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-2 12329 df-3 12330 | 
| This theorem is referenced by: fztpval 13626 funcnvs4 14954 iblcnlem1 25823 basellem9 27132 lgsdir2lem3 27371 axlowdimlem7 28963 axlowdimlem8 28964 axlowdimlem9 28965 axlowdimlem13 28969 3wlkdlem4 30181 3pthdlem1 30183 upgr4cycl4dv4e 30204 konigsberglem4 30274 konigsberglem5 30275 ex-pss 30447 ex-fv 30462 ex-1st 30463 ex-2nd 30464 rabren3dioph 42826 lhe4.4ex1a 44348 nnsum4primesodd 47783 nnsum4primesoddALTV 47784 usgrexmpl1lem 47980 usgrexmpl2lem 47985 usgrexmpl2nb0 47990 usgrexmpl2nb1 47991 usgrexmpl2nb2 47992 usgrexmpl2nb3 47993 usgrexmpl2nb4 47994 usgrexmpl2trifr 47996 zlmodzxzldeplem 48415 | 
| Copyright terms: Public domain | W3C validator |