MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12097
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12096 . 2 3 ∈ ℂ
21elexi 3456 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  Vcvv 3437  cc 10911  3c3 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-1cn 10971  ax-addcl 10973
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-2 12078  df-3 12079
This theorem is referenced by:  fztpval  13360  funcnvs4  14669  iblcnlem1  24993  basellem9  26279  lgsdir2lem3  26516  axlowdimlem7  27357  axlowdimlem8  27358  axlowdimlem9  27359  axlowdimlem13  27363  3wlkdlem4  28567  3pthdlem1  28569  upgr4cycl4dv4e  28590  konigsberglem4  28660  konigsberglem5  28661  ex-pss  28833  ex-fv  28848  ex-1st  28849  ex-2nd  28850  rabren3dioph  40673  lhe4.4ex1a  41984  nnsum4primesodd  45305  nnsum4primesoddALTV  45306  zlmodzxzldeplem  45896
  Copyright terms: Public domain W3C validator