MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 11711
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 11710 . 2 3 ∈ ℂ
21elexi 3463 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  Vcvv 3444  cc 10528  3c3 11685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-2 11692  df-3 11693
This theorem is referenced by:  fztpval  12968  funcnvs4  14272  iblcnlem1  24395  basellem9  25678  lgsdir2lem3  25915  axlowdimlem7  26746  axlowdimlem8  26747  axlowdimlem9  26748  axlowdimlem13  26752  3wlkdlem4  27951  3pthdlem1  27953  upgr4cycl4dv4e  27974  konigsberglem4  28044  konigsberglem5  28045  ex-pss  28217  ex-fv  28232  ex-1st  28233  ex-2nd  28234  rabren3dioph  39753  lhe4.4ex1a  41030  nnsum4primesodd  44311  nnsum4primesoddALTV  44312  zlmodzxzldeplem  44904
  Copyright terms: Public domain W3C validator