| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ex | Structured version Visualization version GIF version | ||
| Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3ex | ⊢ 3 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12267 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | elexi 3470 | 1 ⊢ 3 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ℂcc 11066 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-2 12249 df-3 12250 |
| This theorem is referenced by: fztpval 13547 funcnvs4 14881 iblcnlem1 25689 basellem9 26999 lgsdir2lem3 27238 axlowdimlem7 28875 axlowdimlem8 28876 axlowdimlem9 28877 axlowdimlem13 28881 3wlkdlem4 30091 3pthdlem1 30093 upgr4cycl4dv4e 30114 konigsberglem4 30184 konigsberglem5 30185 ex-pss 30357 ex-fv 30372 ex-1st 30373 ex-2nd 30374 rabren3dioph 42803 lhe4.4ex1a 44318 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 usgrexmpl1lem 48012 usgrexmpl2lem 48017 usgrexmpl2nb0 48022 usgrexmpl2nb1 48023 usgrexmpl2nb2 48024 usgrexmpl2nb3 48025 usgrexmpl2nb4 48026 usgrexmpl2trifr 48028 zlmodzxzldeplem 48487 |
| Copyright terms: Public domain | W3C validator |