MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ex Structured version   Visualization version   GIF version

Theorem 3ex 12218
Description: The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3ex 3 ∈ V

Proof of Theorem 3ex
StepHypRef Expression
1 3cn 12217 . 2 3 ∈ ℂ
21elexi 3460 1 3 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437  cc 11015  3c3 12192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-1cn 11075  ax-addcl 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-2 12199  df-3 12200
This theorem is referenced by:  fztpval  13493  funcnvs4  14829  iblcnlem1  25736  basellem9  27046  lgsdir2lem3  27285  axlowdimlem7  28947  axlowdimlem8  28948  axlowdimlem9  28949  axlowdimlem13  28953  3wlkdlem4  30163  3pthdlem1  30165  upgr4cycl4dv4e  30186  konigsberglem4  30256  konigsberglem5  30257  ex-pss  30429  ex-fv  30444  ex-1st  30445  ex-2nd  30446  rabren3dioph  42972  lhe4.4ex1a  44486  nnsum4primesodd  47958  nnsum4primesoddALTV  47959  usgrexmpl1lem  48183  usgrexmpl2lem  48188  usgrexmpl2nb0  48193  usgrexmpl2nb1  48194  usgrexmpl2nb2  48195  usgrexmpl2nb3  48196  usgrexmpl2nb4  48197  usgrexmpl2trifr  48199  zlmodzxzldeplem  48660
  Copyright terms: Public domain W3C validator