| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28945. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem8 | ⊢ (𝑃‘3) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
| 2 | 1 | fveq1i 6882 | . 2 ⊢ (𝑃‘3) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) |
| 3 | 3ex 12327 | . . . 4 ⊢ 3 ∈ V | |
| 4 | negex 11485 | . . . 4 ⊢ -1 ∈ V | |
| 5 | 3, 4 | fnsn 6599 | . . 3 ⊢ {〈3, -1〉} Fn {3} |
| 6 | c0ex 11234 | . . . . 5 ⊢ 0 ∈ V | |
| 7 | 6 | fconst 6769 | . . . 4 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
| 8 | ffn 6711 | . . . 4 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
| 10 | disjdif 4452 | . . . 4 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
| 11 | 3 | snid 4643 | . . . 4 ⊢ 3 ∈ {3} |
| 12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3}) |
| 13 | fvun1 6975 | . . 3 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3)) | |
| 14 | 5, 9, 12, 13 | mp3an 1463 | . 2 ⊢ (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3) |
| 15 | 3, 4 | fvsn 7178 | . 2 ⊢ ({〈3, -1〉}‘3) = -1 |
| 16 | 2, 14, 15 | 3eqtri 2763 | 1 ⊢ (𝑃‘3) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 〈cop 4612 × cxp 5657 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 -cneg 11472 3c3 12301 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-neg 11474 df-2 12308 df-3 12309 |
| This theorem is referenced by: axlowdimlem16 28941 |
| Copyright terms: Public domain | W3C validator |