Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axlowdimlem8 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 27232. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem8 | ⊢ (𝑃‘3) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6757 | . 2 ⊢ (𝑃‘3) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) |
3 | 3ex 11985 | . . . 4 ⊢ 3 ∈ V | |
4 | negex 11149 | . . . 4 ⊢ -1 ∈ V | |
5 | 3, 4 | fnsn 6476 | . . 3 ⊢ {〈3, -1〉} Fn {3} |
6 | c0ex 10900 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | fconst 6644 | . . . 4 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
8 | ffn 6584 | . . . 4 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
10 | disjdif 4402 | . . . 4 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
11 | 3 | snid 4594 | . . . 4 ⊢ 3 ∈ {3} |
12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3}) |
13 | fvun1 6841 | . . 3 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3)) | |
14 | 5, 9, 12, 13 | mp3an 1459 | . 2 ⊢ (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3) |
15 | 3, 4 | fvsn 7035 | . 2 ⊢ ({〈3, -1〉}‘3) = -1 |
16 | 2, 14, 15 | 3eqtri 2770 | 1 ⊢ (𝑃‘3) = -1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 〈cop 4564 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 -cneg 11136 3c3 11959 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-neg 11138 df-2 11966 df-3 11967 |
This theorem is referenced by: axlowdimlem16 27228 |
Copyright terms: Public domain | W3C validator |