MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem8 Structured version   Visualization version   GIF version

Theorem axlowdimlem8 27220
Description: Lemma for axlowdim 27232. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem8 (𝑃‘3) = -1

Proof of Theorem axlowdimlem8
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6757 . 2 (𝑃‘3) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3)
3 3ex 11985 . . . 4 3 ∈ V
4 negex 11149 . . . 4 -1 ∈ V
53, 4fnsn 6476 . . 3 {⟨3, -1⟩} Fn {3}
6 c0ex 10900 . . . . 5 0 ∈ V
76fconst 6644 . . . 4 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
8 ffn 6584 . . . 4 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
97, 8ax-mp 5 . . 3 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
10 disjdif 4402 . . . 4 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
113snid 4594 . . . 4 3 ∈ {3}
1210, 11pm3.2i 470 . . 3 (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})
13 fvun1 6841 . . 3 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({⟨3, -1⟩}‘3))
145, 9, 12, 13mp3an 1459 . 2 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({⟨3, -1⟩}‘3)
153, 4fvsn 7035 . 2 ({⟨3, -1⟩}‘3) = -1
162, 14, 153eqtri 2770 1 (𝑃‘3) = -1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  c0 4253  {csn 4558  cop 4564   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  -cneg 11136  3c3 11959  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-neg 11138  df-2 11966  df-3 11967
This theorem is referenced by:  axlowdimlem16  27228
  Copyright terms: Public domain W3C validator