Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axlowdimlem8 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 27357. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem8 | ⊢ (𝑃‘3) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6793 | . 2 ⊢ (𝑃‘3) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) |
3 | 3ex 12083 | . . . 4 ⊢ 3 ∈ V | |
4 | negex 11247 | . . . 4 ⊢ -1 ∈ V | |
5 | 3, 4 | fnsn 6509 | . . 3 ⊢ {〈3, -1〉} Fn {3} |
6 | c0ex 10997 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | fconst 6678 | . . . 4 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
8 | ffn 6618 | . . . 4 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
10 | disjdif 4408 | . . . 4 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
11 | 3 | snid 4600 | . . . 4 ⊢ 3 ∈ {3} |
12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3}) |
13 | fvun1 6879 | . . 3 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3)) | |
14 | 5, 9, 12, 13 | mp3an 1459 | . 2 ⊢ (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3) |
15 | 3, 4 | fvsn 7073 | . 2 ⊢ ({〈3, -1〉}‘3) = -1 |
16 | 2, 14, 15 | 3eqtri 2765 | 1 ⊢ (𝑃‘3) = -1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∖ cdif 3886 ∪ cun 3887 ∩ cin 3888 ∅c0 4259 {csn 4564 〈cop 4570 × cxp 5589 Fn wfn 6442 ⟶wf 6443 ‘cfv 6447 (class class class)co 7295 0cc0 10899 1c1 10900 -cneg 11234 3c3 12057 ...cfz 13267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-mulcl 10961 ax-i2m1 10967 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-fv 6455 df-ov 7298 df-neg 11236 df-2 12064 df-3 12065 |
This theorem is referenced by: axlowdimlem16 27353 |
Copyright terms: Public domain | W3C validator |