MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem8 Structured version   Visualization version   GIF version

Theorem axlowdimlem8 28964
Description: Lemma for axlowdim 28976. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem8 (𝑃‘3) = -1

Proof of Theorem axlowdimlem8
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6907 . 2 (𝑃‘3) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3)
3 3ex 12348 . . . 4 3 ∈ V
4 negex 11506 . . . 4 -1 ∈ V
53, 4fnsn 6624 . . 3 {⟨3, -1⟩} Fn {3}
6 c0ex 11255 . . . . 5 0 ∈ V
76fconst 6794 . . . 4 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
8 ffn 6736 . . . 4 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
97, 8ax-mp 5 . . 3 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
10 disjdif 4472 . . . 4 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
113snid 4662 . . . 4 3 ∈ {3}
1210, 11pm3.2i 470 . . 3 (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})
13 fvun1 7000 . . 3 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({⟨3, -1⟩}‘3))
145, 9, 12, 13mp3an 1463 . 2 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({⟨3, -1⟩}‘3)
153, 4fvsn 7201 . 2 ({⟨3, -1⟩}‘3) = -1
162, 14, 153eqtri 2769 1 (𝑃‘3) = -1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  cdif 3948  cun 3949  cin 3950  c0 4333  {csn 4626  cop 4632   × cxp 5683   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  -cneg 11493  3c3 12322  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-mulcl 11217  ax-i2m1 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-neg 11495  df-2 12329  df-3 12330
This theorem is referenced by:  axlowdimlem16  28972
  Copyright terms: Public domain W3C validator