![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem8 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 26430. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem8 | ⊢ (𝑃‘3) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6539 | . 2 ⊢ (𝑃‘3) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) |
3 | 3ex 11567 | . . . 4 ⊢ 3 ∈ V | |
4 | negex 10731 | . . . 4 ⊢ -1 ∈ V | |
5 | 3, 4 | fnsn 6282 | . . 3 ⊢ {〈3, -1〉} Fn {3} |
6 | c0ex 10481 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | fconst 6433 | . . . 4 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
8 | ffn 6382 | . . . 4 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
10 | disjdif 4335 | . . . 4 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
11 | 3 | snid 4506 | . . . 4 ⊢ 3 ∈ {3} |
12 | 10, 11 | pm3.2i 471 | . . 3 ⊢ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3}) |
13 | fvun1 6621 | . . 3 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3)) | |
14 | 5, 9, 12, 13 | mp3an 1453 | . 2 ⊢ (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3) |
15 | 3, 4 | fvsn 6806 | . 2 ⊢ ({〈3, -1〉}‘3) = -1 |
16 | 2, 14, 15 | 3eqtri 2823 | 1 ⊢ (𝑃‘3) = -1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∖ cdif 3856 ∪ cun 3857 ∩ cin 3858 ∅c0 4211 {csn 4472 〈cop 4478 × cxp 5441 Fn wfn 6220 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 0cc0 10383 1c1 10384 -cneg 10718 3c3 11541 ...cfz 12742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-mulcl 10445 ax-i2m1 10451 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-ov 7019 df-neg 10720 df-2 11548 df-3 11549 |
This theorem is referenced by: axlowdimlem16 26426 |
Copyright terms: Public domain | W3C validator |