| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28941. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem8 | ⊢ (𝑃‘3) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
| 2 | 1 | fveq1i 6829 | . 2 ⊢ (𝑃‘3) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) |
| 3 | 3ex 12214 | . . . 4 ⊢ 3 ∈ V | |
| 4 | negex 11365 | . . . 4 ⊢ -1 ∈ V | |
| 5 | 3, 4 | fnsn 6544 | . . 3 ⊢ {〈3, -1〉} Fn {3} |
| 6 | c0ex 11113 | . . . . 5 ⊢ 0 ∈ V | |
| 7 | 6 | fconst 6714 | . . . 4 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
| 8 | ffn 6656 | . . . 4 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
| 10 | disjdif 4421 | . . . 4 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
| 11 | 3 | snid 4614 | . . . 4 ⊢ 3 ∈ {3} |
| 12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3}) |
| 13 | fvun1 6919 | . . 3 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3)) | |
| 14 | 5, 9, 12, 13 | mp3an 1463 | . 2 ⊢ (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3) |
| 15 | 3, 4 | fvsn 7121 | . 2 ⊢ ({〈3, -1〉}‘3) = -1 |
| 16 | 2, 14, 15 | 3eqtri 2760 | 1 ⊢ (𝑃‘3) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 {csn 4575 〈cop 4581 × cxp 5617 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 -cneg 11352 3c3 12188 ...cfz 13409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-i2m1 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-neg 11354 df-2 12195 df-3 12196 |
| This theorem is referenced by: axlowdimlem16 28937 |
| Copyright terms: Public domain | W3C validator |