MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3pthdlem1 Structured version   Visualization version   GIF version

Theorem 3pthdlem1 30184
Description: Lemma 1 for 3pthd 30194. (Contributed by AV, 9-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
Assertion
Ref Expression
3pthdlem1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘   𝑗,𝐹,𝑘   𝑃,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐽(𝑗)   𝐾(𝑗)   𝐿(𝑗)   𝑉(𝑗)

Proof of Theorem 3pthdlem1
StepHypRef Expression
1 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
41, 2, 33wlkdlem3 30181 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 3wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
6 simpr1l 1230 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐴𝐵)
7 simpl 482 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
87adantr 480 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘0) = 𝐴)
9 simpr 484 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
109adantr 480 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵)
118, 10neeq12d 3001 . . . . . . . . 9 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1211adantr 480 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
136, 12mpbird 257 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘0) ≠ (𝑃‘1))
1413a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))
15 simpr1r 1231 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐴𝐶)
16 simpl 482 . . . . . . . . . . 11 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
1716adantl 481 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶)
188, 17neeq12d 3001 . . . . . . . . 9 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘2) ↔ 𝐴𝐶))
1918adantr 480 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘0) ≠ (𝑃‘2) ↔ 𝐴𝐶))
2015, 19mpbird 257 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘0) ≠ (𝑃‘2))
2120a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2)))
2214, 21jca 511 . . . . 5 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))))
23 eqid 2736 . . . . . . . 8 1 = 1
24232a1i 12 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘1) = (𝑃‘1) → 1 = 1))
2524necon3d 2960 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
26 simpr2l 1232 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐵𝐶)
2710, 17neeq12d 3001 . . . . . . . . 9 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
2827adantr 480 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
2926, 28mpbird 257 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘1) ≠ (𝑃‘2))
3029a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))
3125, 30jca 511 . . . . 5 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2))))
3229necomd 2995 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘2) ≠ (𝑃‘1))
3332a1d 25 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))
34 eqid 2736 . . . . . . . 8 2 = 2
35342a1i 12 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘2) = (𝑃‘2) → 2 = 2))
3635necon3d 2960 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2)))
37 simpr2r 1233 . . . . . . . . . 10 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐵𝐷)
38 simpr 484 . . . . . . . . . . . . 13 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
3938adantl 481 . . . . . . . . . . . 12 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘3) = 𝐷)
4010, 39neeq12d 3001 . . . . . . . . . . 11 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘3) ↔ 𝐵𝐷))
4140adantr 480 . . . . . . . . . 10 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘1) ≠ (𝑃‘3) ↔ 𝐵𝐷))
4237, 41mpbird 257 . . . . . . . . 9 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘1) ≠ (𝑃‘3))
4342necomd 2995 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘3) ≠ (𝑃‘1))
4443a1d 25 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)))
45 simp3 1138 . . . . . . . . . . 11 (((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷) → 𝐶𝐷)
4645necomd 2995 . . . . . . . . . 10 (((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷) → 𝐷𝐶)
4746adantl 481 . . . . . . . . 9 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → 𝐷𝐶)
48 simpl 482 . . . . . . . . . . . . 13 (((𝑃‘3) = 𝐷 ∧ (𝑃‘2) = 𝐶) → (𝑃‘3) = 𝐷)
49 simpr 484 . . . . . . . . . . . . 13 (((𝑃‘3) = 𝐷 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
5048, 49neeq12d 3001 . . . . . . . . . . . 12 (((𝑃‘3) = 𝐷 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5150ancoms 458 . . . . . . . . . . 11 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5251adantl 481 . . . . . . . . . 10 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5352adantr 480 . . . . . . . . 9 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((𝑃‘3) ≠ (𝑃‘2) ↔ 𝐷𝐶))
5447, 53mpbird 257 . . . . . . . 8 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (𝑃‘3) ≠ (𝑃‘2))
5554a1d 25 . . . . . . 7 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))
5644, 55jca 511 . . . . . 6 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))
5733, 36, 56jca31 514 . . . . 5 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))))
5822, 31, 57jca31 514 . . . 4 (((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) ∧ ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
594, 5, 58syl2anc 584 . . 3 (𝜑 → ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
601fveq2i 6908 . . . . . . . 8 (♯‘𝑃) = (♯‘⟨“𝐴𝐵𝐶𝐷”⟩)
61 s4len 14939 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶𝐷”⟩) = 4
6260, 61eqtri 2764 . . . . . . 7 (♯‘𝑃) = 4
6362oveq2i 7443 . . . . . 6 (0..^(♯‘𝑃)) = (0..^4)
64 fzo0to42pr 13793 . . . . . 6 (0..^4) = ({0, 1} ∪ {2, 3})
6563, 64eqtri 2764 . . . . 5 (0..^(♯‘𝑃)) = ({0, 1} ∪ {2, 3})
6665raleqi 3323 . . . 4 (∀𝑘 ∈ (0..^(♯‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
67 ralunb 4196 . . . 4 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ (∀𝑘 ∈ {0, 1} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ∧ ∀𝑘 ∈ {2, 3} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)))))
68 c0ex 11256 . . . . . 6 0 ∈ V
69 1ex 11258 . . . . . 6 1 ∈ V
70 neeq1 3002 . . . . . . . 8 (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1))
71 fveq2 6905 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
7271neeq1d 2999 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1)))
7370, 72imbi12d 344 . . . . . . 7 (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))))
74 neeq1 3002 . . . . . . . 8 (𝑘 = 0 → (𝑘 ≠ 2 ↔ 0 ≠ 2))
7571neeq1d 2999 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘0) ≠ (𝑃‘2)))
7674, 75imbi12d 344 . . . . . . 7 (𝑘 = 0 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))))
7773, 76anbi12d 632 . . . . . 6 (𝑘 = 0 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2)))))
78 neeq1 3002 . . . . . . . 8 (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1))
79 fveq2 6905 . . . . . . . . 9 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
8079neeq1d 2999 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1)))
8178, 80imbi12d 344 . . . . . . 7 (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))))
82 neeq1 3002 . . . . . . . 8 (𝑘 = 1 → (𝑘 ≠ 2 ↔ 1 ≠ 2))
8379neeq1d 2999 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘1) ≠ (𝑃‘2)))
8482, 83imbi12d 344 . . . . . . 7 (𝑘 = 1 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2))))
8581, 84anbi12d 632 . . . . . 6 (𝑘 = 1 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))))
8668, 69, 77, 85ralpr 4699 . . . . 5 (∀𝑘 ∈ {0, 1} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ (((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))))
87 2ex 12344 . . . . . 6 2 ∈ V
88 3ex 12349 . . . . . 6 3 ∈ V
89 neeq1 3002 . . . . . . . 8 (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1))
90 fveq2 6905 . . . . . . . . 9 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
9190neeq1d 2999 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1)))
9289, 91imbi12d 344 . . . . . . 7 (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
93 neeq1 3002 . . . . . . . 8 (𝑘 = 2 → (𝑘 ≠ 2 ↔ 2 ≠ 2))
9490neeq1d 2999 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘2) ≠ (𝑃‘2)))
9593, 94imbi12d 344 . . . . . . 7 (𝑘 = 2 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))))
9692, 95anbi12d 632 . . . . . 6 (𝑘 = 2 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2)))))
97 neeq1 3002 . . . . . . . 8 (𝑘 = 3 → (𝑘 ≠ 1 ↔ 3 ≠ 1))
98 fveq2 6905 . . . . . . . . 9 (𝑘 = 3 → (𝑃𝑘) = (𝑃‘3))
9998neeq1d 2999 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘3) ≠ (𝑃‘1)))
10097, 99imbi12d 344 . . . . . . 7 (𝑘 = 3 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1))))
101 neeq1 3002 . . . . . . . 8 (𝑘 = 3 → (𝑘 ≠ 2 ↔ 3 ≠ 2))
10298neeq1d 2999 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ≠ (𝑃‘2) ↔ (𝑃‘3) ≠ (𝑃‘2)))
103101, 102imbi12d 344 . . . . . . 7 (𝑘 = 3 → ((𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)) ↔ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))
104100, 103anbi12d 632 . . . . . 6 (𝑘 = 3 → (((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))))
10587, 88, 96, 104ralpr 4699 . . . . 5 (∀𝑘 ∈ {2, 3} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2)))))
10686, 105anbi12i 628 . . . 4 ((∀𝑘 ∈ {0, 1} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ∧ ∀𝑘 ∈ {2, 3} ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2)))) ↔ ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
10766, 67, 1063bitri 297 . . 3 (∀𝑘 ∈ (0..^(♯‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))) ↔ ((((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (0 ≠ 2 → (𝑃‘0) ≠ (𝑃‘2))) ∧ ((1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (1 ≠ 2 → (𝑃‘1) ≠ (𝑃‘2)))) ∧ (((2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)) ∧ (2 ≠ 2 → (𝑃‘2) ≠ (𝑃‘2))) ∧ ((3 ≠ 1 → (𝑃‘3) ≠ (𝑃‘1)) ∧ (3 ≠ 2 → (𝑃‘3) ≠ (𝑃‘2))))))
10859, 107sylibr 234 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
1092fveq2i 6908 . . . . . . . 8 (♯‘𝐹) = (♯‘⟨“𝐽𝐾𝐿”⟩)
110 s3len 14934 . . . . . . . 8 (♯‘⟨“𝐽𝐾𝐿”⟩) = 3
111109, 110eqtri 2764 . . . . . . 7 (♯‘𝐹) = 3
112111oveq2i 7443 . . . . . 6 (1..^(♯‘𝐹)) = (1..^3)
113 fzo13pr 13789 . . . . . 6 (1..^3) = {1, 2}
114112, 113eqtri 2764 . . . . 5 (1..^(♯‘𝐹)) = {1, 2}
115114raleqi 3323 . . . 4 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ {1, 2} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
116 neeq2 3003 . . . . . 6 (𝑗 = 1 → (𝑘𝑗𝑘 ≠ 1))
117 fveq2 6905 . . . . . . 7 (𝑗 = 1 → (𝑃𝑗) = (𝑃‘1))
118117neeq2d 3000 . . . . . 6 (𝑗 = 1 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘1)))
119116, 118imbi12d 344 . . . . 5 (𝑗 = 1 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1))))
120 neeq2 3003 . . . . . 6 (𝑗 = 2 → (𝑘𝑗𝑘 ≠ 2))
121 fveq2 6905 . . . . . . 7 (𝑗 = 2 → (𝑃𝑗) = (𝑃‘2))
122121neeq2d 3000 . . . . . 6 (𝑗 = 2 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘2)))
123120, 122imbi12d 344 . . . . 5 (𝑗 = 2 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
12469, 87, 119, 123ralpr 4699 . . . 4 (∀𝑗 ∈ {1, 2} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
125115, 124bitri 275 . . 3 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
126125ralbii 3092 . 2 (∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑘 ∈ (0..^(♯‘𝑃))((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ∧ (𝑘 ≠ 2 → (𝑃𝑘) ≠ (𝑃‘2))))
127108, 126sylibr 234 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  cun 3948  {cpr 4627  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157  2c2 12322  3c3 12323  4c4 12324  ..^cfzo 13695  chash 14370  ⟨“cs3 14882  ⟨“cs4 14883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-s2 14888  df-s3 14889  df-s4 14890
This theorem is referenced by:  3pthd  30194
  Copyright terms: Public domain W3C validator