| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12227 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 12241 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 12174 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 ℕcn 12162 3c3 12218 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 5nn 12248 4ne0 12270 4nn0 12437 4z 12543 fldiv4p1lem1div2 13773 fldiv4lem1div2 13775 iexpcyc 14148 fsumcube 16002 ef01bndlem 16128 flodddiv4 16361 6lcm4e12 16562 2expltfac 17039 8nprm 17058 37prm 17067 43prm 17068 83prm 17069 139prm 17070 631prm 17073 prmo4 17074 1259prm 17082 2503lem2 17084 starvndx 17241 starvid 17242 srngstr 17248 homndx 17350 homid 17351 slotsdifplendx2 17355 slotsdifocndx 17356 prdsvalstr 17391 catstr 17898 lt6abl 19801 pcoass 24900 minveclem3 25305 iblitg 25645 dveflem 25859 tan4thpiOLD 26400 atan1 26814 log2tlbnd 26831 log2ub 26835 bclbnd 27167 bpos1 27170 bposlem6 27176 bposlem7 27177 bposlem8 27178 bposlem9 27179 gausslemma2dlem4 27256 m1lgs 27275 2lgslem1a 27278 2lgslem3a 27283 2lgslem3b 27284 2lgslem3c 27285 2lgslem3d 27286 2sqreultlem 27334 2sqreunnltlem 27337 chebbnd1lem1 27356 chebbnd1lem2 27357 chebbnd1lem3 27358 pntibndlem1 27476 pntibndlem2 27478 pntibndlem3 27479 pntlema 27483 pntlemb 27484 pntlemg 27485 pntlemf 27492 upgr4cycl4dv4e 30087 fib5 34369 hgt750lem2 34616 hgt750leme 34622 iccioo01 37288 420gcd8e4 41967 420lcm8e840 41972 lcm4un 41977 lcmineqlem23 42012 lcmineqlem 42013 3lexlogpow5ineq2 42016 aks4d1p1p5 42036 rmydioph 42976 rmxdioph 42978 expdiophlem2 42984 inductionexd 44117 amgm4d 44162 257prm 47535 fmtno4sqrt 47545 fmtno4prmfac 47546 fmtno4prmfac193 47547 fmtno5nprm 47557 139prmALT 47570 mod42tp1mod8 47576 2exp340mod341 47707 341fppr2 47708 wtgoldbnnsum4prm 47776 bgoldbachlt 47787 tgblthelfgott 47789 |
| Copyright terms: Public domain | W3C validator |