![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn | ⊢ 4 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12328 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3nn 12342 | . . 3 ⊢ 3 ∈ ℕ | |
3 | peano2nn 12275 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 4 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 1c1 11153 + caddc 11155 ℕcn 12263 3c3 12319 4c4 12320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 |
This theorem is referenced by: 5nn 12349 4nn0 12542 4z 12648 fldiv4p1lem1div2 13871 fldiv4lem1div2 13873 iexpcyc 14242 fsumcube 16092 ef01bndlem 16216 flodddiv4 16448 6lcm4e12 16649 2expltfac 17126 8nprm 17145 37prm 17154 43prm 17155 83prm 17156 139prm 17157 631prm 17160 prmo4 17161 1259prm 17169 2503lem2 17171 starvndx 17347 starvid 17348 srngstr 17354 homndx 17456 homid 17457 slotsdifplendx2 17462 slotsdifocndx 17463 prdsvalstr 17498 oppchomfvalOLD 17759 oppcbasOLD 17764 resccoOLD 17881 catstr 18012 lt6abl 19927 pcoass 25070 minveclem3 25476 iblitg 25817 dveflem 26031 tan4thpiOLD 26571 atan1 26985 log2tlbnd 27002 log2ub 27006 bclbnd 27338 bpos1 27341 bposlem6 27347 bposlem7 27348 bposlem8 27349 bposlem9 27350 gausslemma2dlem4 27427 m1lgs 27446 2lgslem1a 27449 2lgslem3a 27454 2lgslem3b 27455 2lgslem3c 27456 2lgslem3d 27457 2sqreultlem 27505 2sqreunnltlem 27508 chebbnd1lem1 27527 chebbnd1lem2 27528 chebbnd1lem3 27529 pntibndlem1 27647 pntibndlem2 27649 pntibndlem3 27650 pntlema 27654 pntlemb 27655 pntlemg 27656 pntlemf 27663 upgr4cycl4dv4e 30213 fib5 34386 hgt750lem2 34645 hgt750leme 34651 iccioo01 37309 420gcd8e4 41987 420lcm8e840 41992 lcm4un 41997 lcmineqlem23 42032 lcmineqlem 42033 3lexlogpow5ineq2 42036 aks4d1p1p5 42056 rmydioph 43002 rmxdioph 43004 expdiophlem2 43010 inductionexd 44144 amgm4d 44189 257prm 47485 fmtno4sqrt 47495 fmtno4prmfac 47496 fmtno4prmfac193 47497 fmtno5nprm 47507 139prmALT 47520 mod42tp1mod8 47526 2exp340mod341 47657 341fppr2 47658 wtgoldbnnsum4prm 47726 bgoldbachlt 47737 tgblthelfgott 47739 prstclevalOLD 48869 prstcocvalOLD 48872 |
Copyright terms: Public domain | W3C validator |