Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn | ⊢ 4 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 11968 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3nn 11982 | . . 3 ⊢ 3 ∈ ℕ | |
3 | peano2nn 11915 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 4 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 1c1 10803 + caddc 10805 ℕcn 11903 3c3 11959 4c4 11960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 |
This theorem is referenced by: 5nn 11989 4nn0 12182 4z 12284 fldiv4p1lem1div2 13483 fldiv4lem1div2 13485 iexpcyc 13851 fsumcube 15698 ef01bndlem 15821 flodddiv4 16050 6lcm4e12 16249 2expltfac 16722 8nprm 16741 37prm 16750 43prm 16751 83prm 16752 139prm 16753 631prm 16756 prmo4 16757 1259prm 16765 2503lem2 16767 starvndx 16938 starvid 16939 srngstr 16945 homndx 17040 homid 17041 prdsvalstr 17080 oppchomfvalOLD 17341 oppcbasOLD 17346 resccoOLD 17463 catstr 17590 lt6abl 19411 pcoass 24093 minveclem3 24498 iblitg 24838 dveflem 25048 tan4thpi 25576 atan1 25983 log2tlbnd 26000 log2ub 26004 bclbnd 26333 bpos1 26336 bposlem6 26342 bposlem7 26343 bposlem8 26344 bposlem9 26345 gausslemma2dlem4 26422 m1lgs 26441 2lgslem1a 26444 2lgslem3a 26449 2lgslem3b 26450 2lgslem3c 26451 2lgslem3d 26452 2sqreultlem 26500 2sqreunnltlem 26503 chebbnd1lem1 26522 chebbnd1lem2 26523 chebbnd1lem3 26524 pntibndlem1 26642 pntibndlem2 26644 pntibndlem3 26645 pntlema 26649 pntlemb 26650 pntlemg 26651 pntlemf 26658 upgr4cycl4dv4e 28450 fib5 32272 hgt750lem2 32532 hgt750leme 32538 iccioo01 35425 420gcd8e4 39942 420lcm8e840 39947 lcm4un 39952 lcmineqlem23 39987 lcmineqlem 39988 3lexlogpow5ineq2 39991 aks4d1p1p5 40011 rmydioph 40752 rmxdioph 40754 expdiophlem2 40760 inductionexd 41654 amgm4d 41700 257prm 44901 fmtno4sqrt 44911 fmtno4prmfac 44912 fmtno4prmfac193 44913 fmtno5nprm 44923 139prmALT 44936 mod42tp1mod8 44942 2exp340mod341 45073 341fppr2 45074 wtgoldbnnsum4prm 45142 bgoldbachlt 45153 tgblthelfgott 45155 prstcleval 46237 prstcocval 46239 |
Copyright terms: Public domain | W3C validator |