| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12258 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 12272 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 12205 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 3c3 12249 4c4 12250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 |
| This theorem is referenced by: 5nn 12279 4ne0 12301 4nn0 12468 4z 12574 fldiv4p1lem1div2 13804 fldiv4lem1div2 13806 iexpcyc 14179 fsumcube 16033 ef01bndlem 16159 flodddiv4 16392 6lcm4e12 16593 2expltfac 17070 8nprm 17089 37prm 17098 43prm 17099 83prm 17100 139prm 17101 631prm 17104 prmo4 17105 1259prm 17113 2503lem2 17115 starvndx 17272 starvid 17273 srngstr 17279 homndx 17381 homid 17382 slotsdifplendx2 17386 slotsdifocndx 17387 prdsvalstr 17422 catstr 17929 lt6abl 19832 pcoass 24931 minveclem3 25336 iblitg 25676 dveflem 25890 tan4thpiOLD 26431 atan1 26845 log2tlbnd 26862 log2ub 26866 bclbnd 27198 bpos1 27201 bposlem6 27207 bposlem7 27208 bposlem8 27209 bposlem9 27210 gausslemma2dlem4 27287 m1lgs 27306 2lgslem1a 27309 2lgslem3a 27314 2lgslem3b 27315 2lgslem3c 27316 2lgslem3d 27317 2sqreultlem 27365 2sqreunnltlem 27368 chebbnd1lem1 27387 chebbnd1lem2 27388 chebbnd1lem3 27389 pntibndlem1 27507 pntibndlem2 27509 pntibndlem3 27510 pntlema 27514 pntlemb 27515 pntlemg 27516 pntlemf 27523 upgr4cycl4dv4e 30121 fib5 34403 hgt750lem2 34650 hgt750leme 34656 iccioo01 37322 420gcd8e4 42001 420lcm8e840 42006 lcm4un 42011 lcmineqlem23 42046 lcmineqlem 42047 3lexlogpow5ineq2 42050 aks4d1p1p5 42070 rmydioph 43010 rmxdioph 43012 expdiophlem2 43018 inductionexd 44151 amgm4d 44196 257prm 47566 fmtno4sqrt 47576 fmtno4prmfac 47577 fmtno4prmfac193 47578 fmtno5nprm 47588 139prmALT 47601 mod42tp1mod8 47607 2exp340mod341 47738 341fppr2 47739 wtgoldbnnsum4prm 47807 bgoldbachlt 47818 tgblthelfgott 47820 |
| Copyright terms: Public domain | W3C validator |