| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12201 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 12215 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 12148 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℕcn 12136 3c3 12192 4c4 12193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 |
| This theorem is referenced by: 5nn 12222 4ne0 12244 4nn0 12411 4z 12516 fldiv4p1lem1div2 13746 fldiv4lem1div2 13748 iexpcyc 14121 fsumcube 15974 ef01bndlem 16100 flodddiv4 16333 6lcm4e12 16534 2expltfac 17011 8nprm 17030 37prm 17039 43prm 17040 83prm 17041 139prm 17042 631prm 17045 prmo4 17046 1259prm 17054 2503lem2 17056 starvndx 17213 starvid 17214 srngstr 17220 homndx 17322 homid 17323 slotsdifplendx2 17327 slotsdifocndx 17328 prdsvalstr 17363 catstr 17875 lt6abl 19815 pcoass 24971 minveclem3 25376 iblitg 25716 dveflem 25930 tan4thpiOLD 26471 atan1 26885 log2tlbnd 26902 log2ub 26906 bclbnd 27238 bpos1 27241 bposlem6 27247 bposlem7 27248 bposlem8 27249 bposlem9 27250 gausslemma2dlem4 27327 m1lgs 27346 2lgslem1a 27349 2lgslem3a 27354 2lgslem3b 27355 2lgslem3c 27356 2lgslem3d 27357 2sqreultlem 27405 2sqreunnltlem 27408 chebbnd1lem1 27427 chebbnd1lem2 27428 chebbnd1lem3 27429 pntibndlem1 27547 pntibndlem2 27549 pntibndlem3 27550 pntlema 27554 pntlemb 27555 pntlemg 27556 pntlemf 27563 upgr4cycl4dv4e 30186 fib5 34490 hgt750lem2 34737 hgt750leme 34743 iccioo01 37444 420gcd8e4 42172 420lcm8e840 42177 lcm4un 42182 lcmineqlem23 42217 lcmineqlem 42218 3lexlogpow5ineq2 42221 aks4d1p1p5 42241 rmydioph 43171 rmxdioph 43173 expdiophlem2 43179 inductionexd 44312 amgm4d 44357 257prm 47723 fmtno4sqrt 47733 fmtno4prmfac 47734 fmtno4prmfac193 47735 fmtno5nprm 47745 139prmALT 47758 mod42tp1mod8 47764 2exp340mod341 47895 341fppr2 47896 wtgoldbnnsum4prm 47964 bgoldbachlt 47975 tgblthelfgott 47977 |
| Copyright terms: Public domain | W3C validator |