| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12251 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 12265 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 12198 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 3c3 12242 4c4 12243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 |
| This theorem is referenced by: 5nn 12272 4ne0 12294 4nn0 12461 4z 12567 fldiv4p1lem1div2 13797 fldiv4lem1div2 13799 iexpcyc 14172 fsumcube 16026 ef01bndlem 16152 flodddiv4 16385 6lcm4e12 16586 2expltfac 17063 8nprm 17082 37prm 17091 43prm 17092 83prm 17093 139prm 17094 631prm 17097 prmo4 17098 1259prm 17106 2503lem2 17108 starvndx 17265 starvid 17266 srngstr 17272 homndx 17374 homid 17375 slotsdifplendx2 17379 slotsdifocndx 17380 prdsvalstr 17415 catstr 17922 lt6abl 19825 pcoass 24924 minveclem3 25329 iblitg 25669 dveflem 25883 tan4thpiOLD 26424 atan1 26838 log2tlbnd 26855 log2ub 26859 bclbnd 27191 bpos1 27194 bposlem6 27200 bposlem7 27201 bposlem8 27202 bposlem9 27203 gausslemma2dlem4 27280 m1lgs 27299 2lgslem1a 27302 2lgslem3a 27307 2lgslem3b 27308 2lgslem3c 27309 2lgslem3d 27310 2sqreultlem 27358 2sqreunnltlem 27361 chebbnd1lem1 27380 chebbnd1lem2 27381 chebbnd1lem3 27382 pntibndlem1 27500 pntibndlem2 27502 pntibndlem3 27503 pntlema 27507 pntlemb 27508 pntlemg 27509 pntlemf 27516 upgr4cycl4dv4e 30114 fib5 34396 hgt750lem2 34643 hgt750leme 34649 iccioo01 37315 420gcd8e4 41994 420lcm8e840 41999 lcm4un 42004 lcmineqlem23 42039 lcmineqlem 42040 3lexlogpow5ineq2 42043 aks4d1p1p5 42063 rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 inductionexd 44144 amgm4d 44189 257prm 47562 fmtno4sqrt 47572 fmtno4prmfac 47573 fmtno4prmfac193 47574 fmtno5nprm 47584 139prmALT 47597 mod42tp1mod8 47603 2exp340mod341 47734 341fppr2 47735 wtgoldbnnsum4prm 47803 bgoldbachlt 47814 tgblthelfgott 47816 |
| Copyright terms: Public domain | W3C validator |