| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12185 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 12199 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 12132 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 ℕcn 12120 3c3 12176 4c4 12177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 |
| This theorem is referenced by: 5nn 12206 4ne0 12228 4nn0 12395 4z 12501 fldiv4p1lem1div2 13734 fldiv4lem1div2 13736 iexpcyc 14109 fsumcube 15962 ef01bndlem 16088 flodddiv4 16321 6lcm4e12 16522 2expltfac 16999 8nprm 17018 37prm 17027 43prm 17028 83prm 17029 139prm 17030 631prm 17033 prmo4 17034 1259prm 17042 2503lem2 17044 starvndx 17201 starvid 17202 srngstr 17208 homndx 17310 homid 17311 slotsdifplendx2 17315 slotsdifocndx 17316 prdsvalstr 17351 catstr 17862 lt6abl 19802 pcoass 24946 minveclem3 25351 iblitg 25691 dveflem 25905 tan4thpiOLD 26446 atan1 26860 log2tlbnd 26877 log2ub 26881 bclbnd 27213 bpos1 27216 bposlem6 27222 bposlem7 27223 bposlem8 27224 bposlem9 27225 gausslemma2dlem4 27302 m1lgs 27321 2lgslem1a 27324 2lgslem3a 27329 2lgslem3b 27330 2lgslem3c 27331 2lgslem3d 27332 2sqreultlem 27380 2sqreunnltlem 27383 chebbnd1lem1 27402 chebbnd1lem2 27403 chebbnd1lem3 27404 pntibndlem1 27522 pntibndlem2 27524 pntibndlem3 27525 pntlema 27529 pntlemb 27530 pntlemg 27531 pntlemf 27538 upgr4cycl4dv4e 30157 fib5 34410 hgt750lem2 34657 hgt750leme 34663 iccioo01 37361 420gcd8e4 42039 420lcm8e840 42044 lcm4un 42049 lcmineqlem23 42084 lcmineqlem 42085 3lexlogpow5ineq2 42088 aks4d1p1p5 42108 rmydioph 43047 rmxdioph 43049 expdiophlem2 43055 inductionexd 44188 amgm4d 44233 257prm 47592 fmtno4sqrt 47602 fmtno4prmfac 47603 fmtno4prmfac193 47604 fmtno5nprm 47614 139prmALT 47627 mod42tp1mod8 47633 2exp340mod341 47764 341fppr2 47765 wtgoldbnnsum4prm 47833 bgoldbachlt 47844 tgblthelfgott 47846 |
| Copyright terms: Public domain | W3C validator |