![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn | ⊢ 4 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12358 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3nn 12372 | . . 3 ⊢ 3 ∈ ℕ | |
3 | peano2nn 12305 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 4 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 1c1 11185 + caddc 11187 ℕcn 12293 3c3 12349 4c4 12350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 |
This theorem is referenced by: 5nn 12379 4nn0 12572 4z 12677 fldiv4p1lem1div2 13886 fldiv4lem1div2 13888 iexpcyc 14256 fsumcube 16108 ef01bndlem 16232 flodddiv4 16461 6lcm4e12 16663 2expltfac 17140 8nprm 17159 37prm 17168 43prm 17169 83prm 17170 139prm 17171 631prm 17174 prmo4 17175 1259prm 17183 2503lem2 17185 starvndx 17361 starvid 17362 srngstr 17368 homndx 17470 homid 17471 slotsdifplendx2 17476 slotsdifocndx 17477 prdsvalstr 17512 oppchomfvalOLD 17773 oppcbasOLD 17778 resccoOLD 17895 catstr 18026 lt6abl 19937 pcoass 25076 minveclem3 25482 iblitg 25823 dveflem 26037 tan4thpiOLD 26575 atan1 26989 log2tlbnd 27006 log2ub 27010 bclbnd 27342 bpos1 27345 bposlem6 27351 bposlem7 27352 bposlem8 27353 bposlem9 27354 gausslemma2dlem4 27431 m1lgs 27450 2lgslem1a 27453 2lgslem3a 27458 2lgslem3b 27459 2lgslem3c 27460 2lgslem3d 27461 2sqreultlem 27509 2sqreunnltlem 27512 chebbnd1lem1 27531 chebbnd1lem2 27532 chebbnd1lem3 27533 pntibndlem1 27651 pntibndlem2 27653 pntibndlem3 27654 pntlema 27658 pntlemb 27659 pntlemg 27660 pntlemf 27667 upgr4cycl4dv4e 30217 fib5 34370 hgt750lem2 34629 hgt750leme 34635 iccioo01 37293 420gcd8e4 41963 420lcm8e840 41968 lcm4un 41973 lcmineqlem23 42008 lcmineqlem 42009 3lexlogpow5ineq2 42012 aks4d1p1p5 42032 rmydioph 42971 rmxdioph 42973 expdiophlem2 42979 inductionexd 44117 amgm4d 44162 257prm 47435 fmtno4sqrt 47445 fmtno4prmfac 47446 fmtno4prmfac193 47447 fmtno5nprm 47457 139prmALT 47470 mod42tp1mod8 47476 2exp340mod341 47607 341fppr2 47608 wtgoldbnnsum4prm 47676 bgoldbachlt 47687 tgblthelfgott 47689 prstclevalOLD 48736 prstcocvalOLD 48739 |
Copyright terms: Public domain | W3C validator |