| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12212 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 12226 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 12159 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 ℕcn 12147 3c3 12203 4c4 12204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 |
| This theorem is referenced by: 5nn 12233 4ne0 12255 4nn0 12422 4z 12528 fldiv4p1lem1div2 13758 fldiv4lem1div2 13760 iexpcyc 14133 fsumcube 15986 ef01bndlem 16112 flodddiv4 16345 6lcm4e12 16546 2expltfac 17023 8nprm 17042 37prm 17051 43prm 17052 83prm 17053 139prm 17054 631prm 17057 prmo4 17058 1259prm 17066 2503lem2 17068 starvndx 17225 starvid 17226 srngstr 17232 homndx 17334 homid 17335 slotsdifplendx2 17339 slotsdifocndx 17340 prdsvalstr 17375 catstr 17886 lt6abl 19793 pcoass 24941 minveclem3 25346 iblitg 25686 dveflem 25900 tan4thpiOLD 26441 atan1 26855 log2tlbnd 26872 log2ub 26876 bclbnd 27208 bpos1 27211 bposlem6 27217 bposlem7 27218 bposlem8 27219 bposlem9 27220 gausslemma2dlem4 27297 m1lgs 27316 2lgslem1a 27319 2lgslem3a 27324 2lgslem3b 27325 2lgslem3c 27326 2lgslem3d 27327 2sqreultlem 27375 2sqreunnltlem 27378 chebbnd1lem1 27397 chebbnd1lem2 27398 chebbnd1lem3 27399 pntibndlem1 27517 pntibndlem2 27519 pntibndlem3 27520 pntlema 27524 pntlemb 27525 pntlemg 27526 pntlemf 27533 upgr4cycl4dv4e 30148 fib5 34392 hgt750lem2 34639 hgt750leme 34645 iccioo01 37320 420gcd8e4 41999 420lcm8e840 42004 lcm4un 42009 lcmineqlem23 42044 lcmineqlem 42045 3lexlogpow5ineq2 42048 aks4d1p1p5 42068 rmydioph 43007 rmxdioph 43009 expdiophlem2 43015 inductionexd 44148 amgm4d 44193 257prm 47565 fmtno4sqrt 47575 fmtno4prmfac 47576 fmtno4prmfac193 47577 fmtno5nprm 47587 139prmALT 47600 mod42tp1mod8 47606 2exp340mod341 47737 341fppr2 47738 wtgoldbnnsum4prm 47806 bgoldbachlt 47817 tgblthelfgott 47819 |
| Copyright terms: Public domain | W3C validator |