Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn | ⊢ 4 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12038 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3nn 12052 | . . 3 ⊢ 3 ∈ ℕ | |
3 | peano2nn 11985 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 4 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 3c3 12029 4c4 12030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 |
This theorem is referenced by: 5nn 12059 4nn0 12252 4z 12354 fldiv4p1lem1div2 13555 fldiv4lem1div2 13557 iexpcyc 13923 fsumcube 15770 ef01bndlem 15893 flodddiv4 16122 6lcm4e12 16321 2expltfac 16794 8nprm 16813 37prm 16822 43prm 16823 83prm 16824 139prm 16825 631prm 16828 prmo4 16829 1259prm 16837 2503lem2 16839 starvndx 17012 starvid 17013 srngstr 17019 homndx 17121 homid 17122 slotsdifplendx2 17127 slotsdifocndx 17128 prdsvalstr 17163 oppchomfvalOLD 17424 oppcbasOLD 17429 resccoOLD 17546 catstr 17674 lt6abl 19496 pcoass 24187 minveclem3 24593 iblitg 24933 dveflem 25143 tan4thpi 25671 atan1 26078 log2tlbnd 26095 log2ub 26099 bclbnd 26428 bpos1 26431 bposlem6 26437 bposlem7 26438 bposlem8 26439 bposlem9 26440 gausslemma2dlem4 26517 m1lgs 26536 2lgslem1a 26539 2lgslem3a 26544 2lgslem3b 26545 2lgslem3c 26546 2lgslem3d 26547 2sqreultlem 26595 2sqreunnltlem 26598 chebbnd1lem1 26617 chebbnd1lem2 26618 chebbnd1lem3 26619 pntibndlem1 26737 pntibndlem2 26739 pntibndlem3 26740 pntlema 26744 pntlemb 26745 pntlemg 26746 pntlemf 26753 upgr4cycl4dv4e 28549 fib5 32372 hgt750lem2 32632 hgt750leme 32638 iccioo01 35498 420gcd8e4 40014 420lcm8e840 40019 lcm4un 40024 lcmineqlem23 40059 lcmineqlem 40060 3lexlogpow5ineq2 40063 aks4d1p1p5 40083 rmydioph 40836 rmxdioph 40838 expdiophlem2 40844 inductionexd 41765 amgm4d 41811 257prm 45013 fmtno4sqrt 45023 fmtno4prmfac 45024 fmtno4prmfac193 45025 fmtno5nprm 45035 139prmALT 45048 mod42tp1mod8 45054 2exp340mod341 45185 341fppr2 45186 wtgoldbnnsum4prm 45254 bgoldbachlt 45265 tgblthelfgott 45267 prstclevalOLD 46350 prstcocvalOLD 46353 |
Copyright terms: Public domain | W3C validator |