| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4nn | Structured version Visualization version GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12303 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 12317 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 12250 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 1c1 11128 + caddc 11130 ℕcn 12238 3c3 12294 4c4 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 |
| This theorem is referenced by: 5nn 12324 4ne0 12346 4nn0 12518 4z 12624 fldiv4p1lem1div2 13850 fldiv4lem1div2 13852 iexpcyc 14223 fsumcube 16074 ef01bndlem 16200 flodddiv4 16432 6lcm4e12 16633 2expltfac 17110 8nprm 17129 37prm 17138 43prm 17139 83prm 17140 139prm 17141 631prm 17144 prmo4 17145 1259prm 17153 2503lem2 17155 starvndx 17314 starvid 17315 srngstr 17321 homndx 17423 homid 17424 slotsdifplendx2 17428 slotsdifocndx 17429 prdsvalstr 17464 catstr 17971 lt6abl 19874 pcoass 24973 minveclem3 25379 iblitg 25719 dveflem 25933 tan4thpiOLD 26474 atan1 26888 log2tlbnd 26905 log2ub 26909 bclbnd 27241 bpos1 27244 bposlem6 27250 bposlem7 27251 bposlem8 27252 bposlem9 27253 gausslemma2dlem4 27330 m1lgs 27349 2lgslem1a 27352 2lgslem3a 27357 2lgslem3b 27358 2lgslem3c 27359 2lgslem3d 27360 2sqreultlem 27408 2sqreunnltlem 27411 chebbnd1lem1 27430 chebbnd1lem2 27431 chebbnd1lem3 27432 pntibndlem1 27550 pntibndlem2 27552 pntibndlem3 27553 pntlema 27557 pntlemb 27558 pntlemg 27559 pntlemf 27566 upgr4cycl4dv4e 30112 fib5 34383 hgt750lem2 34630 hgt750leme 34636 iccioo01 37291 420gcd8e4 41965 420lcm8e840 41970 lcm4un 41975 lcmineqlem23 42010 lcmineqlem 42011 3lexlogpow5ineq2 42014 aks4d1p1p5 42034 rmydioph 42985 rmxdioph 42987 expdiophlem2 42993 inductionexd 44126 amgm4d 44171 257prm 47523 fmtno4sqrt 47533 fmtno4prmfac 47534 fmtno4prmfac193 47535 fmtno5nprm 47545 139prmALT 47558 mod42tp1mod8 47564 2exp340mod341 47695 341fppr2 47696 wtgoldbnnsum4prm 47764 bgoldbachlt 47775 tgblthelfgott 47777 |
| Copyright terms: Public domain | W3C validator |