MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem7 Structured version   Visualization version   GIF version

Theorem axlowdimlem7 28875
Description: Lemma for axlowdim 28888. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem7 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem7
StepHypRef Expression
1 axlowdimlem7.1 . 2 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2 eqid 2729 . . . . . . . 8 {⟨3, -1⟩} = {⟨3, -1⟩}
3 3ex 12268 . . . . . . . . 9 3 ∈ V
4 negex 11419 . . . . . . . . 9 -1 ∈ V
53, 4fsn 7107 . . . . . . . 8 ({⟨3, -1⟩}:{3}⟶{-1} ↔ {⟨3, -1⟩} = {⟨3, -1⟩})
62, 5mpbir 231 . . . . . . 7 {⟨3, -1⟩}:{3}⟶{-1}
7 neg1rr 12172 . . . . . . . 8 -1 ∈ ℝ
8 snssi 4772 . . . . . . . 8 (-1 ∈ ℝ → {-1} ⊆ ℝ)
97, 8ax-mp 5 . . . . . . 7 {-1} ⊆ ℝ
10 fss 6704 . . . . . . 7 (({⟨3, -1⟩}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {⟨3, -1⟩}:{3}⟶ℝ)
116, 9, 10mp2an 692 . . . . . 6 {⟨3, -1⟩}:{3}⟶ℝ
12 0re 11176 . . . . . . 7 0 ∈ ℝ
1312fconst6 6750 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ
1411, 13pm3.2i 470 . . . . 5 ({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ)
15 disjdif 4435 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
16 fun2 6723 . . . . 5 ((({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ)
1714, 15, 16mp2an 692 . . . 4 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ
18 eluzle 12806 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
19 1le3 12393 . . . . . . . . 9 1 ≤ 3
2018, 19jctil 519 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁))
21 3z 12566 . . . . . . . . 9 3 ∈ ℤ
22 1z 12563 . . . . . . . . 9 1 ∈ ℤ
23 eluzelz 12803 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
24 elfz 13474 . . . . . . . . 9 ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2521, 22, 23, 24mp3an12i 1467 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2620, 25mpbird 257 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 3 ∈ (1...𝑁))
2726snssd 4773 . . . . . 6 (𝑁 ∈ (ℤ‘3) → {3} ⊆ (1...𝑁))
28 undif 4445 . . . . . 6 ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
2927, 28sylib 218 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
3029feq2d 6672 . . . 4 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3117, 30mpbii 233 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)
32 eluz3nn 12848 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
33 elee 28821 . . . 4 (𝑁 ∈ ℕ → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3432, 33syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3531, 34mpbird 257 . 2 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
361, 35eqeltrid 2832 1 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069  cle 11209  -cneg 11406  cn 12186  3c3 12242  cz 12529  cuz 12793  ...cfz 13468  𝔼cee 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-z 12530  df-uz 12794  df-fz 13469  df-ee 28818
This theorem is referenced by:  axlowdimlem15  28883  axlowdimlem16  28884  axlowdimlem17  28885
  Copyright terms: Public domain W3C validator