MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem7 Structured version   Visualization version   GIF version

Theorem axlowdimlem7 28678
Description: Lemma for axlowdim 28691. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem7 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem7
StepHypRef Expression
1 axlowdimlem7.1 . 2 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2 eqid 2724 . . . . . . . 8 {⟨3, -1⟩} = {⟨3, -1⟩}
3 3ex 12292 . . . . . . . . 9 3 ∈ V
4 negex 11456 . . . . . . . . 9 -1 ∈ V
53, 4fsn 7126 . . . . . . . 8 ({⟨3, -1⟩}:{3}⟶{-1} ↔ {⟨3, -1⟩} = {⟨3, -1⟩})
62, 5mpbir 230 . . . . . . 7 {⟨3, -1⟩}:{3}⟶{-1}
7 neg1rr 12325 . . . . . . . 8 -1 ∈ ℝ
8 snssi 4804 . . . . . . . 8 (-1 ∈ ℝ → {-1} ⊆ ℝ)
97, 8ax-mp 5 . . . . . . 7 {-1} ⊆ ℝ
10 fss 6725 . . . . . . 7 (({⟨3, -1⟩}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {⟨3, -1⟩}:{3}⟶ℝ)
116, 9, 10mp2an 689 . . . . . 6 {⟨3, -1⟩}:{3}⟶ℝ
12 0re 11214 . . . . . . 7 0 ∈ ℝ
1312fconst6 6772 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ
1411, 13pm3.2i 470 . . . . 5 ({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ)
15 disjdif 4464 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
16 fun2 6745 . . . . 5 ((({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ)
1714, 15, 16mp2an 689 . . . 4 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ
18 eluzle 12833 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
19 1le3 12422 . . . . . . . . 9 1 ≤ 3
2018, 19jctil 519 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁))
21 3z 12593 . . . . . . . . 9 3 ∈ ℤ
22 1z 12590 . . . . . . . . 9 1 ∈ ℤ
23 eluzelz 12830 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
24 elfz 13488 . . . . . . . . 9 ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2521, 22, 23, 24mp3an12i 1461 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2620, 25mpbird 257 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 3 ∈ (1...𝑁))
2726snssd 4805 . . . . . 6 (𝑁 ∈ (ℤ‘3) → {3} ⊆ (1...𝑁))
28 undif 4474 . . . . . 6 ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
2927, 28sylib 217 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
3029feq2d 6694 . . . 4 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3117, 30mpbii 232 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)
32 eluzge3nn 12872 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
33 elee 28624 . . . 4 (𝑁 ∈ ℕ → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3432, 33syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3531, 34mpbird 257 . 2 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
361, 35eqeltrid 2829 1 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cdif 3938  cun 3939  cin 3940  wss 3941  c0 4315  {csn 4621  cop 4627   class class class wbr 5139   × cxp 5665  wf 6530  cfv 6534  (class class class)co 7402  cr 11106  0cc0 11107  1c1 11108  cle 11247  -cneg 11443  cn 12210  3c3 12266  cz 12556  cuz 12820  ...cfz 13482  𝔼cee 28618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-z 12557  df-uz 12821  df-fz 13483  df-ee 28621
This theorem is referenced by:  axlowdimlem15  28686  axlowdimlem16  28687  axlowdimlem17  28688
  Copyright terms: Public domain W3C validator