![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem7 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 26198. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem7 | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . 2 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | eqid 2799 | . . . . . . . 8 ⊢ {〈3, -1〉} = {〈3, -1〉} | |
3 | 3ex 11396 | . . . . . . . . 9 ⊢ 3 ∈ V | |
4 | negex 10570 | . . . . . . . . 9 ⊢ -1 ∈ V | |
5 | 3, 4 | fsn 6629 | . . . . . . . 8 ⊢ ({〈3, -1〉}:{3}⟶{-1} ↔ {〈3, -1〉} = {〈3, -1〉}) |
6 | 2, 5 | mpbir 223 | . . . . . . 7 ⊢ {〈3, -1〉}:{3}⟶{-1} |
7 | neg1rr 11435 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
8 | snssi 4527 | . . . . . . . 8 ⊢ (-1 ∈ ℝ → {-1} ⊆ ℝ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ {-1} ⊆ ℝ |
10 | fss 6269 | . . . . . . 7 ⊢ (({〈3, -1〉}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {〈3, -1〉}:{3}⟶ℝ) | |
11 | 6, 9, 10 | mp2an 684 | . . . . . 6 ⊢ {〈3, -1〉}:{3}⟶ℝ |
12 | 0re 10330 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
13 | 12 | fconst6 6310 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ |
14 | 11, 13 | pm3.2i 463 | . . . . 5 ⊢ ({〈3, -1〉}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) |
15 | disjdif 4234 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
16 | fun2 6282 | . . . . 5 ⊢ ((({〈3, -1〉}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ) | |
17 | 14, 15, 16 | mp2an 684 | . . . 4 ⊢ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ |
18 | eluzle 11943 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
19 | 1le3 11532 | . . . . . . . . 9 ⊢ 1 ≤ 3 | |
20 | 18, 19 | jctil 516 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁)) |
21 | eluzelz 11940 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
22 | 3z 11700 | . . . . . . . . . 10 ⊢ 3 ∈ ℤ | |
23 | 1z 11697 | . . . . . . . . . 10 ⊢ 1 ∈ ℤ | |
24 | elfz 12586 | . . . . . . . . . 10 ⊢ ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁))) | |
25 | 22, 23, 24 | mp3an12 1576 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁))) |
26 | 21, 25 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁))) |
27 | 20, 26 | mpbird 249 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ∈ (1...𝑁)) |
28 | 27 | snssd 4528 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → {3} ⊆ (1...𝑁)) |
29 | undif 4243 | . . . . . 6 ⊢ ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁)) | |
30 | 28, 29 | sylib 210 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁)) |
31 | 30 | feq2d 6242 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) |
32 | 17, 31 | mpbii 225 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ) |
33 | eluzge3nn 11974 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
34 | elee 26131 | . . . 4 ⊢ (𝑁 ∈ ℕ → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) | |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) |
36 | 32, 35 | mpbird 249 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁)) |
37 | 1, 36 | syl5eqel 2882 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∖ cdif 3766 ∪ cun 3767 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 {csn 4368 〈cop 4374 class class class wbr 4843 × cxp 5310 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ℝcr 10223 0cc0 10224 1c1 10225 ≤ cle 10364 -cneg 10557 ℕcn 11312 3c3 11369 ℤcz 11666 ℤ≥cuz 11930 ...cfz 12580 𝔼cee 26125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-z 11667 df-uz 11931 df-fz 12581 df-ee 26128 |
This theorem is referenced by: axlowdimlem15 26193 axlowdimlem16 26194 axlowdimlem17 26195 |
Copyright terms: Public domain | W3C validator |