| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28924. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem7 | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlowdimlem7.1 | . 2 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
| 2 | eqid 2729 | . . . . . . . 8 ⊢ {〈3, -1〉} = {〈3, -1〉} | |
| 3 | 3ex 12228 | . . . . . . . . 9 ⊢ 3 ∈ V | |
| 4 | negex 11379 | . . . . . . . . 9 ⊢ -1 ∈ V | |
| 5 | 3, 4 | fsn 7073 | . . . . . . . 8 ⊢ ({〈3, -1〉}:{3}⟶{-1} ↔ {〈3, -1〉} = {〈3, -1〉}) |
| 6 | 2, 5 | mpbir 231 | . . . . . . 7 ⊢ {〈3, -1〉}:{3}⟶{-1} |
| 7 | neg1rr 12132 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
| 8 | snssi 4762 | . . . . . . . 8 ⊢ (-1 ∈ ℝ → {-1} ⊆ ℝ) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ {-1} ⊆ ℝ |
| 10 | fss 6672 | . . . . . . 7 ⊢ (({〈3, -1〉}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {〈3, -1〉}:{3}⟶ℝ) | |
| 11 | 6, 9, 10 | mp2an 692 | . . . . . 6 ⊢ {〈3, -1〉}:{3}⟶ℝ |
| 12 | 0re 11136 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 13 | 12 | fconst6 6718 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ |
| 14 | 11, 13 | pm3.2i 470 | . . . . 5 ⊢ ({〈3, -1〉}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) |
| 15 | disjdif 4425 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
| 16 | fun2 6691 | . . . . 5 ⊢ ((({〈3, -1〉}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ) | |
| 17 | 14, 15, 16 | mp2an 692 | . . . 4 ⊢ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ |
| 18 | eluzle 12766 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
| 19 | 1le3 12353 | . . . . . . . . 9 ⊢ 1 ≤ 3 | |
| 20 | 18, 19 | jctil 519 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁)) |
| 21 | 3z 12526 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
| 22 | 1z 12523 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 23 | eluzelz 12763 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 24 | elfz 13434 | . . . . . . . . 9 ⊢ ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁))) | |
| 25 | 21, 22, 23, 24 | mp3an12i 1467 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁))) |
| 26 | 20, 25 | mpbird 257 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ∈ (1...𝑁)) |
| 27 | 26 | snssd 4763 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → {3} ⊆ (1...𝑁)) |
| 28 | undif 4435 | . . . . . 6 ⊢ ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁)) | |
| 29 | 27, 28 | sylib 218 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁)) |
| 30 | 29 | feq2d 6640 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) |
| 31 | 17, 30 | mpbii 233 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ) |
| 32 | eluz3nn 12808 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 33 | elee 28857 | . . . 4 ⊢ (𝑁 ∈ ℕ → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) | |
| 34 | 32, 33 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) |
| 35 | 31, 34 | mpbird 257 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁)) |
| 36 | 1, 35 | eqeltrid 2832 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 〈cop 4585 class class class wbr 5095 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 ≤ cle 11169 -cneg 11366 ℕcn 12146 3c3 12202 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 𝔼cee 28851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-z 12490 df-uz 12754 df-fz 13429 df-ee 28854 |
| This theorem is referenced by: axlowdimlem15 28919 axlowdimlem16 28920 axlowdimlem17 28921 |
| Copyright terms: Public domain | W3C validator |