Step | Hyp | Ref
| Expression |
1 | | axlowdimlem7.1 |
. 2
β’ π = ({β¨3, -1β©} βͺ
(((1...π) β {3})
Γ {0})) |
2 | | eqid 2731 |
. . . . . . . 8
β’ {β¨3,
-1β©} = {β¨3, -1β©} |
3 | | 3ex 12299 |
. . . . . . . . 9
β’ 3 β
V |
4 | | negex 11463 |
. . . . . . . . 9
β’ -1 β
V |
5 | 3, 4 | fsn 7136 |
. . . . . . . 8
β’
({β¨3, -1β©}:{3}βΆ{-1} β {β¨3, -1β©} =
{β¨3, -1β©}) |
6 | 2, 5 | mpbir 230 |
. . . . . . 7
β’ {β¨3,
-1β©}:{3}βΆ{-1} |
7 | | neg1rr 12332 |
. . . . . . . 8
β’ -1 β
β |
8 | | snssi 4812 |
. . . . . . . 8
β’ (-1
β β β {-1} β β) |
9 | 7, 8 | ax-mp 5 |
. . . . . . 7
β’ {-1}
β β |
10 | | fss 6735 |
. . . . . . 7
β’
(({β¨3, -1β©}:{3}βΆ{-1} β§ {-1} β β) β
{β¨3, -1β©}:{3}βΆβ) |
11 | 6, 9, 10 | mp2an 689 |
. . . . . 6
β’ {β¨3,
-1β©}:{3}βΆβ |
12 | | 0re 11221 |
. . . . . . 7
β’ 0 β
β |
13 | 12 | fconst6 6782 |
. . . . . 6
β’
(((1...π) β
{3}) Γ {0}):((1...π)
β {3})βΆβ |
14 | 11, 13 | pm3.2i 470 |
. . . . 5
β’
({β¨3, -1β©}:{3}βΆβ β§ (((1...π) β {3}) Γ {0}):((1...π) β
{3})βΆβ) |
15 | | disjdif 4472 |
. . . . 5
β’ ({3}
β© ((1...π) β
{3})) = β
|
16 | | fun2 6755 |
. . . . 5
β’
((({β¨3, -1β©}:{3}βΆβ β§ (((1...π) β {3}) Γ {0}):((1...π) β {3})βΆβ)
β§ ({3} β© ((1...π)
β {3})) = β
) β ({β¨3, -1β©} βͺ (((1...π) β {3}) Γ
{0})):({3} βͺ ((1...π)
β {3}))βΆβ) |
17 | 14, 15, 16 | mp2an 689 |
. . . 4
β’
({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0})):({3} βͺ
((1...π) β
{3}))βΆβ |
18 | | eluzle 12840 |
. . . . . . . . 9
β’ (π β
(β€β₯β3) β 3 β€ π) |
19 | | 1le3 12429 |
. . . . . . . . 9
β’ 1 β€
3 |
20 | 18, 19 | jctil 519 |
. . . . . . . 8
β’ (π β
(β€β₯β3) β (1 β€ 3 β§ 3 β€ π)) |
21 | | 3z 12600 |
. . . . . . . . 9
β’ 3 β
β€ |
22 | | 1z 12597 |
. . . . . . . . 9
β’ 1 β
β€ |
23 | | eluzelz 12837 |
. . . . . . . . 9
β’ (π β
(β€β₯β3) β π β β€) |
24 | | elfz 13495 |
. . . . . . . . 9
β’ ((3
β β€ β§ 1 β β€ β§ π β β€) β (3 β (1...π) β (1 β€ 3 β§ 3 β€
π))) |
25 | 21, 22, 23, 24 | mp3an12i 1464 |
. . . . . . . 8
β’ (π β
(β€β₯β3) β (3 β (1...π) β (1 β€ 3 β§ 3 β€ π))) |
26 | 20, 25 | mpbird 256 |
. . . . . . 7
β’ (π β
(β€β₯β3) β 3 β (1...π)) |
27 | 26 | snssd 4813 |
. . . . . 6
β’ (π β
(β€β₯β3) β {3} β (1...π)) |
28 | | undif 4482 |
. . . . . 6
β’ ({3}
β (1...π) β ({3}
βͺ ((1...π) β
{3})) = (1...π)) |
29 | 27, 28 | sylib 217 |
. . . . 5
β’ (π β
(β€β₯β3) β ({3} βͺ ((1...π) β {3})) = (1...π)) |
30 | 29 | feq2d 6704 |
. . . 4
β’ (π β
(β€β₯β3) β (({β¨3, -1β©} βͺ
(((1...π) β {3})
Γ {0})):({3} βͺ ((1...π) β {3}))βΆβ β
({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0})):(1...π)βΆβ)) |
31 | 17, 30 | mpbii 232 |
. . 3
β’ (π β
(β€β₯β3) β ({β¨3, -1β©} βͺ (((1...π) β {3}) Γ
{0})):(1...π)βΆβ) |
32 | | eluzge3nn 12879 |
. . . 4
β’ (π β
(β€β₯β3) β π β β) |
33 | | elee 28416 |
. . . 4
β’ (π β β β
(({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0})) β
(πΌβπ) β
({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0})):(1...π)βΆβ)) |
34 | 32, 33 | syl 17 |
. . 3
β’ (π β
(β€β₯β3) β (({β¨3, -1β©} βͺ
(((1...π) β {3})
Γ {0})) β (πΌβπ) β ({β¨3, -1β©} βͺ
(((1...π) β {3})
Γ {0})):(1...π)βΆβ)) |
35 | 31, 34 | mpbird 256 |
. 2
β’ (π β
(β€β₯β3) β ({β¨3, -1β©} βͺ (((1...π) β {3}) Γ {0}))
β (πΌβπ)) |
36 | 1, 35 | eqeltrid 2836 |
1
β’ (π β
(β€β₯β3) β π β (πΌβπ)) |