MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem7 Structured version   Visualization version   GIF version

Theorem axlowdimlem7 26736
Description: Lemma for axlowdim 26749. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem7 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem7
StepHypRef Expression
1 axlowdimlem7.1 . 2 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2 eqid 2823 . . . . . . . 8 {⟨3, -1⟩} = {⟨3, -1⟩}
3 3ex 11722 . . . . . . . . 9 3 ∈ V
4 negex 10886 . . . . . . . . 9 -1 ∈ V
53, 4fsn 6899 . . . . . . . 8 ({⟨3, -1⟩}:{3}⟶{-1} ↔ {⟨3, -1⟩} = {⟨3, -1⟩})
62, 5mpbir 233 . . . . . . 7 {⟨3, -1⟩}:{3}⟶{-1}
7 neg1rr 11755 . . . . . . . 8 -1 ∈ ℝ
8 snssi 4743 . . . . . . . 8 (-1 ∈ ℝ → {-1} ⊆ ℝ)
97, 8ax-mp 5 . . . . . . 7 {-1} ⊆ ℝ
10 fss 6529 . . . . . . 7 (({⟨3, -1⟩}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {⟨3, -1⟩}:{3}⟶ℝ)
116, 9, 10mp2an 690 . . . . . 6 {⟨3, -1⟩}:{3}⟶ℝ
12 0re 10645 . . . . . . 7 0 ∈ ℝ
1312fconst6 6571 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ
1411, 13pm3.2i 473 . . . . 5 ({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ)
15 disjdif 4423 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
16 fun2 6543 . . . . 5 ((({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ)
1714, 15, 16mp2an 690 . . . 4 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ
18 eluzle 12259 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
19 1le3 11852 . . . . . . . . 9 1 ≤ 3
2018, 19jctil 522 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁))
21 3z 12018 . . . . . . . . 9 3 ∈ ℤ
22 1z 12015 . . . . . . . . 9 1 ∈ ℤ
23 eluzelz 12256 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
24 elfz 12901 . . . . . . . . 9 ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2521, 22, 23, 24mp3an12i 1461 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2620, 25mpbird 259 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 3 ∈ (1...𝑁))
2726snssd 4744 . . . . . 6 (𝑁 ∈ (ℤ‘3) → {3} ⊆ (1...𝑁))
28 undif 4432 . . . . . 6 ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
2927, 28sylib 220 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
3029feq2d 6502 . . . 4 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3117, 30mpbii 235 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)
32 eluzge3nn 12293 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
33 elee 26682 . . . 4 (𝑁 ∈ ℕ → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3432, 33syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3531, 34mpbird 259 . 2 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
361, 35eqeltrid 2919 1 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569  cop 4575   class class class wbr 5068   × cxp 5555  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540  cle 10678  -cneg 10873  cn 11640  3c3 11696  cz 11984  cuz 12246  ...cfz 12895  𝔼cee 26676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-z 11985  df-uz 12247  df-fz 12896  df-ee 26679
This theorem is referenced by:  axlowdimlem15  26744  axlowdimlem16  26745  axlowdimlem17  26746
  Copyright terms: Public domain W3C validator