| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28895. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem7 | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlowdimlem7.1 | . 2 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
| 2 | eqid 2730 | . . . . . . . 8 ⊢ {〈3, -1〉} = {〈3, -1〉} | |
| 3 | 3ex 12275 | . . . . . . . . 9 ⊢ 3 ∈ V | |
| 4 | negex 11426 | . . . . . . . . 9 ⊢ -1 ∈ V | |
| 5 | 3, 4 | fsn 7110 | . . . . . . . 8 ⊢ ({〈3, -1〉}:{3}⟶{-1} ↔ {〈3, -1〉} = {〈3, -1〉}) |
| 6 | 2, 5 | mpbir 231 | . . . . . . 7 ⊢ {〈3, -1〉}:{3}⟶{-1} |
| 7 | neg1rr 12179 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
| 8 | snssi 4775 | . . . . . . . 8 ⊢ (-1 ∈ ℝ → {-1} ⊆ ℝ) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ {-1} ⊆ ℝ |
| 10 | fss 6707 | . . . . . . 7 ⊢ (({〈3, -1〉}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {〈3, -1〉}:{3}⟶ℝ) | |
| 11 | 6, 9, 10 | mp2an 692 | . . . . . 6 ⊢ {〈3, -1〉}:{3}⟶ℝ |
| 12 | 0re 11183 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 13 | 12 | fconst6 6753 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ |
| 14 | 11, 13 | pm3.2i 470 | . . . . 5 ⊢ ({〈3, -1〉}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) |
| 15 | disjdif 4438 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
| 16 | fun2 6726 | . . . . 5 ⊢ ((({〈3, -1〉}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ) | |
| 17 | 14, 15, 16 | mp2an 692 | . . . 4 ⊢ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ |
| 18 | eluzle 12813 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
| 19 | 1le3 12400 | . . . . . . . . 9 ⊢ 1 ≤ 3 | |
| 20 | 18, 19 | jctil 519 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁)) |
| 21 | 3z 12573 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
| 22 | 1z 12570 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 23 | eluzelz 12810 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 24 | elfz 13481 | . . . . . . . . 9 ⊢ ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁))) | |
| 25 | 21, 22, 23, 24 | mp3an12i 1467 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁))) |
| 26 | 20, 25 | mpbird 257 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ∈ (1...𝑁)) |
| 27 | 26 | snssd 4776 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → {3} ⊆ (1...𝑁)) |
| 28 | undif 4448 | . . . . . 6 ⊢ ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁)) | |
| 29 | 27, 28 | sylib 218 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁)) |
| 30 | 29 | feq2d 6675 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) |
| 31 | 17, 30 | mpbii 233 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ) |
| 32 | eluz3nn 12855 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
| 33 | elee 28828 | . . . 4 ⊢ (𝑁 ∈ ℕ → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) | |
| 34 | 32, 33 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)) |
| 35 | 31, 34 | mpbird 257 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁)) |
| 36 | 1, 35 | eqeltrid 2833 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 〈cop 4598 class class class wbr 5110 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 ≤ cle 11216 -cneg 11413 ℕcn 12193 3c3 12249 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 𝔼cee 28822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-z 12537 df-uz 12801 df-fz 13476 df-ee 28825 |
| This theorem is referenced by: axlowdimlem15 28890 axlowdimlem16 28891 axlowdimlem17 28892 |
| Copyright terms: Public domain | W3C validator |