MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem7 Structured version   Visualization version   GIF version

Theorem axlowdimlem7 28928
Description: Lemma for axlowdim 28941. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem7 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem7
StepHypRef Expression
1 axlowdimlem7.1 . 2 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2 eqid 2733 . . . . . . . 8 {⟨3, -1⟩} = {⟨3, -1⟩}
3 3ex 12214 . . . . . . . . 9 3 ∈ V
4 negex 11365 . . . . . . . . 9 -1 ∈ V
53, 4fsn 7074 . . . . . . . 8 ({⟨3, -1⟩}:{3}⟶{-1} ↔ {⟨3, -1⟩} = {⟨3, -1⟩})
62, 5mpbir 231 . . . . . . 7 {⟨3, -1⟩}:{3}⟶{-1}
7 neg1rr 12118 . . . . . . . 8 -1 ∈ ℝ
8 snssi 4759 . . . . . . . 8 (-1 ∈ ℝ → {-1} ⊆ ℝ)
97, 8ax-mp 5 . . . . . . 7 {-1} ⊆ ℝ
10 fss 6672 . . . . . . 7 (({⟨3, -1⟩}:{3}⟶{-1} ∧ {-1} ⊆ ℝ) → {⟨3, -1⟩}:{3}⟶ℝ)
116, 9, 10mp2an 692 . . . . . 6 {⟨3, -1⟩}:{3}⟶ℝ
12 0re 11121 . . . . . . 7 0 ∈ ℝ
1312fconst6 6718 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ
1411, 13pm3.2i 470 . . . . 5 ({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ)
15 disjdif 4421 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
16 fun2 6691 . . . . 5 ((({⟨3, -1⟩}:{3}⟶ℝ ∧ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶ℝ) ∧ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ)
1714, 15, 16mp2an 692 . . . 4 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ
18 eluzle 12751 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
19 1le3 12339 . . . . . . . . 9 1 ≤ 3
2018, 19jctil 519 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 3 ∧ 3 ≤ 𝑁))
21 3z 12511 . . . . . . . . 9 3 ∈ ℤ
22 1z 12508 . . . . . . . . 9 1 ∈ ℤ
23 eluzelz 12748 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
24 elfz 13415 . . . . . . . . 9 ((3 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2521, 22, 23, 24mp3an12i 1467 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (3 ∈ (1...𝑁) ↔ (1 ≤ 3 ∧ 3 ≤ 𝑁)))
2620, 25mpbird 257 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 3 ∈ (1...𝑁))
2726snssd 4760 . . . . . 6 (𝑁 ∈ (ℤ‘3) → {3} ⊆ (1...𝑁))
28 undif 4431 . . . . . 6 ({3} ⊆ (1...𝑁) ↔ ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
2927, 28sylib 218 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({3} ∪ ((1...𝑁) ∖ {3})) = (1...𝑁))
3029feq2d 6640 . . . 4 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):({3} ∪ ((1...𝑁) ∖ {3}))⟶ℝ ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3117, 30mpbii 233 . . 3 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ)
32 eluz3nn 12789 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
33 elee 28873 . . . 4 (𝑁 ∈ ℕ → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3432, 33syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})):(1...𝑁)⟶ℝ))
3531, 34mpbird 257 . 2 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
361, 35eqeltrid 2837 1 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4575  cop 4581   class class class wbr 5093   × cxp 5617  wf 6482  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014  cle 11154  -cneg 11352  cn 12132  3c3 12188  cz 12475  cuz 12738  ...cfz 13409  𝔼cee 28867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-z 12476  df-uz 12739  df-fz 13410  df-ee 28870
This theorem is referenced by:  axlowdimlem15  28936  axlowdimlem16  28937  axlowdimlem17  28938
  Copyright terms: Public domain W3C validator