MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-1st Structured version   Visualization version   GIF version

Theorem ex-1st 30478
Description: Example for df-1st 8032. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-1st (1st ‘⟨3, 4⟩) = 3

Proof of Theorem ex-1st
StepHypRef Expression
1 3ex 12377 . 2 3 ∈ V
2 4re 12379 . . 3 4 ∈ ℝ
32elexi 3511 . 2 4 ∈ V
41, 3op1st 8040 1 (1st ‘⟨3, 4⟩) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cop 4654  cfv 6575  1st c1st 8030  cr 11185  3c3 12351  4c4 12352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-i2m1 11254  ax-1ne0 11255  ax-rrecex 11258  ax-cnre 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453  df-1st 8032  df-2 12358  df-3 12359  df-4 12360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator