| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-1st | Structured version Visualization version GIF version | ||
| Description: Example for df-1st 7995. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-1st | ⊢ (1st ‘〈3, 4〉) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ex 12329 | . 2 ⊢ 3 ∈ V | |
| 2 | 4re 12331 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 2 | elexi 3486 | . 2 ⊢ 4 ∈ V |
| 4 | 1, 3 | op1st 8003 | 1 ⊢ (1st ‘〈3, 4〉) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 〈cop 4612 ‘cfv 6540 1st c1st 7993 ℝcr 11135 3c3 12303 4c4 12304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-i2m1 11204 ax-1ne0 11205 ax-rrecex 11208 ax-cnre 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-1st 7995 df-2 12310 df-3 12311 df-4 12312 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |