MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-1st Structured version   Visualization version   GIF version

Theorem ex-1st 28709
Description: Example for df-1st 7804. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-1st (1st ‘⟨3, 4⟩) = 3

Proof of Theorem ex-1st
StepHypRef Expression
1 3ex 11985 . 2 3 ∈ V
2 4re 11987 . . 3 4 ∈ ℝ
32elexi 3441 . 2 4 ∈ V
41, 3op1st 7812 1 (1st ‘⟨3, 4⟩) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cop 4564  cfv 6418  1st c1st 7802  cr 10801  3c3 11959  4c4 11960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-i2m1 10870  ax-1ne0 10871  ax-rrecex 10874  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-1st 7804  df-2 11966  df-3 11967  df-4 11968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator