| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-1st | Structured version Visualization version GIF version | ||
| Description: Example for df-1st 7927. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-1st | ⊢ (1st ‘〈3, 4〉) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ex 12214 | . 2 ⊢ 3 ∈ V | |
| 2 | 4re 12216 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 2 | elexi 3460 | . 2 ⊢ 4 ∈ V |
| 4 | 1, 3 | op1st 7935 | 1 ⊢ (1st ‘〈3, 4〉) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 〈cop 4581 ‘cfv 6486 1st c1st 7925 ℝcr 11012 3c3 12188 4c4 12189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-i2m1 11081 ax-1ne0 11082 ax-rrecex 11085 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-1st 7927 df-2 12195 df-3 12196 df-4 12197 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |