![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-1st | Structured version Visualization version GIF version |
Description: Example for df-1st 8019. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-1st | ⊢ (1st ‘〈3, 4〉) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ex 12352 | . 2 ⊢ 3 ∈ V | |
2 | 4re 12354 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 2 | elexi 3502 | . 2 ⊢ 4 ∈ V |
4 | 1, 3 | op1st 8027 | 1 ⊢ (1st ‘〈3, 4〉) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 〈cop 4638 ‘cfv 6566 1st c1st 8017 ℝcr 11158 3c3 12326 4c4 12327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-i2m1 11227 ax-1ne0 11228 ax-rrecex 11231 ax-cnre 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-iota 6519 df-fun 6568 df-fv 6574 df-ov 7438 df-1st 8019 df-2 12333 df-3 12334 df-4 12335 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |