Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-fv | Structured version Visualization version GIF version |
Description: Example for df-fv 6491. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-fv | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6828 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = ({〈2, 6〉, 〈3, 9〉}‘3)) | |
2 | 2re 12152 | . . . 4 ⊢ 2 ∈ ℝ | |
3 | 2lt3 12250 | . . . 4 ⊢ 2 < 3 | |
4 | 2, 3 | ltneii 11193 | . . 3 ⊢ 2 ≠ 3 |
5 | 3ex 12160 | . . . 4 ⊢ 3 ∈ V | |
6 | 9re 12177 | . . . . 5 ⊢ 9 ∈ ℝ | |
7 | 6 | elexi 3461 | . . . 4 ⊢ 9 ∈ V |
8 | 5, 7 | fvpr2 7127 | . . 3 ⊢ (2 ≠ 3 → ({〈2, 6〉, 〈3, 9〉}‘3) = 9) |
9 | 4, 8 | ax-mp 5 | . 2 ⊢ ({〈2, 6〉, 〈3, 9〉}‘3) = 9 |
10 | 1, 9 | eqtrdi 2793 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2941 {cpr 4579 〈cop 4583 ‘cfv 6483 ℝcr 10975 2c2 12133 3c3 12134 6c6 12137 9c9 12140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-po 5536 df-so 5537 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |