![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-fv | Structured version Visualization version GIF version |
Description: Example for df-fv 6574. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-fv | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6910 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = ({〈2, 6〉, 〈3, 9〉}‘3)) | |
2 | 2re 12344 | . . . 4 ⊢ 2 ∈ ℝ | |
3 | 2lt3 12442 | . . . 4 ⊢ 2 < 3 | |
4 | 2, 3 | ltneii 11378 | . . 3 ⊢ 2 ≠ 3 |
5 | 3ex 12352 | . . . 4 ⊢ 3 ∈ V | |
6 | 9re 12369 | . . . . 5 ⊢ 9 ∈ ℝ | |
7 | 6 | elexi 3502 | . . . 4 ⊢ 9 ∈ V |
8 | 5, 7 | fvpr2 7217 | . . 3 ⊢ (2 ≠ 3 → ({〈2, 6〉, 〈3, 9〉}‘3) = 9) |
9 | 4, 8 | ax-mp 5 | . 2 ⊢ ({〈2, 6〉, 〈3, 9〉}‘3) = 9 |
10 | 1, 9 | eqtrdi 2792 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → (𝐹‘3) = 9) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ≠ wne 2939 {cpr 4634 〈cop 4638 ‘cfv 6566 ℝcr 11158 2c2 12325 3c3 12326 6c6 12329 9c9 12332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-po 5598 df-so 5599 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |