MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fv Structured version   Visualization version   GIF version

Theorem ex-fv 30425
Description: Example for df-fv 6494. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-fv (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9)

Proof of Theorem ex-fv
StepHypRef Expression
1 fveq1 6827 . 2 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = ({⟨2, 6⟩, ⟨3, 9⟩}‘3))
2 2re 12206 . . . 4 2 ∈ ℝ
3 2lt3 12299 . . . 4 2 < 3
42, 3ltneii 11233 . . 3 2 ≠ 3
5 3ex 12214 . . . 4 3 ∈ V
6 9re 12231 . . . . 5 9 ∈ ℝ
76elexi 3460 . . . 4 9 ∈ V
85, 7fvpr2 7133 . . 3 (2 ≠ 3 → ({⟨2, 6⟩, ⟨3, 9⟩}‘3) = 9)
94, 8ax-mp 5 . 2 ({⟨2, 6⟩, ⟨3, 9⟩}‘3) = 9
101, 9eqtrdi 2784 1 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2929  {cpr 4577  cop 4581  cfv 6486  cr 11012  2c2 12187  3c3 12188  6c6 12191  9c9 12194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator