Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhe4.4ex1a Structured version   Visualization version   GIF version

Theorem lhe4.4ex1a 44348
Description: Example of the Fundamental Theorem of Calculus, part two (ftc2 26085): ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 26085 as simply the "Fundamental Theorem of Calculus", then ftc1 26083 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.)
Assertion
Ref Expression
lhe4.4ex1a ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3)

Proof of Theorem lhe4.4ex1a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1red 11262 . . . 4 (⊤ → 1 ∈ ℝ)
2 2re 12340 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
4 1le2 12475 . . . . 5 1 ≤ 2
54a1i 11 . . . 4 (⊤ → 1 ≤ 2)
6 reelprrecn 11247 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
76a1i 11 . . . . . 6 (⊤ → ℝ ∈ {ℝ, ℂ})
8 recn 11245 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
9 3nn0 12544 . . . . . . . . . . 11 3 ∈ ℕ0
10 expcl 14120 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑦↑3) ∈ ℂ)
119, 10mpan2 691 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑦↑3) ∈ ℂ)
128, 11syl 17 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦↑3) ∈ ℂ)
13 3cn 12347 . . . . . . . . . 10 3 ∈ ℂ
14 3ne0 12372 . . . . . . . . . 10 3 ≠ 0
15 divcl 11928 . . . . . . . . . 10 (((𝑦↑3) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑦↑3) / 3) ∈ ℂ)
1613, 14, 15mp3an23 1455 . . . . . . . . 9 ((𝑦↑3) ∈ ℂ → ((𝑦↑3) / 3) ∈ ℂ)
1712, 16syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦↑3) / 3) ∈ ℂ)
18 mulcl 11239 . . . . . . . . 9 ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (3 · 𝑦) ∈ ℂ)
1913, 8, 18sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ → (3 · 𝑦) ∈ ℂ)
2017, 19subcld 11620 . . . . . . 7 (𝑦 ∈ ℝ → (((𝑦↑3) / 3) − (3 · 𝑦)) ∈ ℂ)
2120adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → (((𝑦↑3) / 3) − (3 · 𝑦)) ∈ ℂ)
22 ovexd 7466 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → ((𝑦↑2) − 3) ∈ V)
2317adantl 481 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → ((𝑦↑3) / 3) ∈ ℂ)
24 ovexd 7466 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → (𝑦↑2) ∈ V)
25 divrec2 11939 . . . . . . . . . . . . 13 (((𝑦↑3) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2613, 14, 25mp3an23 1455 . . . . . . . . . . . 12 ((𝑦↑3) ∈ ℂ → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2712, 26syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2827mpteq2ia 5245 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3)) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))
2928oveq2i 7442 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3))))
3012adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ ℝ) → (𝑦↑3) ∈ ℂ)
31 ovexd 7466 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ ℝ) → (3 · (𝑦↑2)) ∈ V)
32 eqid 2737 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ (𝑦↑3)) = (𝑦 ∈ ℂ ↦ (𝑦↑3))
3332, 11fmpti 7132 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ ↦ (𝑦↑3)):ℂ⟶ℂ
34 ssid 4006 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
35 ax-resscn 11212 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
36 ovex 7464 . . . . . . . . . . . . . . . 16 (3 · (𝑦↑2)) ∈ V
37 3nn 12345 . . . . . . . . . . . . . . . . . 18 3 ∈ ℕ
38 dvexp 25991 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1)))))
3937, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1))))
40 3m1e2 12394 . . . . . . . . . . . . . . . . . . . 20 (3 − 1) = 2
4140oveq2i 7442 . . . . . . . . . . . . . . . . . . 19 (𝑦↑(3 − 1)) = (𝑦↑2)
4241oveq2i 7442 . . . . . . . . . . . . . . . . . 18 (3 · (𝑦↑(3 − 1))) = (3 · (𝑦↑2))
4342mpteq2i 5247 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1)))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑2)))
4439, 43eqtri 2765 . . . . . . . . . . . . . . . 16 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑2)))
4536, 44dmmpti 6712 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = ℂ
4635, 45sseqtrri 4033 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3)))
47 dvres3 25948 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (𝑦↑3)):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ))
486, 33, 34, 46, 47mp4an 693 . . . . . . . . . . . . 13 (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ)
49 resmpt 6055 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝑦↑3)))
5035, 49ax-mp 5 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝑦↑3))
5150oveq2i 7442 . . . . . . . . . . . . 13 (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3)))
5244reseq1i 5993 . . . . . . . . . . . . . 14 ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ)
53 resmpt 6055 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2))))
5435, 53ax-mp 5 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5552, 54eqtri 2765 . . . . . . . . . . . . 13 ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5648, 51, 553eqtr3i 2773 . . . . . . . . . . . 12 (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3))) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5756a1i 11 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3))) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2))))
58 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
5958, 13, 14divcli 12009 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
6059a1i 11 . . . . . . . . . . 11 (⊤ → (1 / 3) ∈ ℂ)
617, 30, 31, 57, 60dvmptcmul 26002 . . . . . . . . . 10 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2)))))
6261mptru 1547 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2))))
63 sqcl 14158 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦↑2) ∈ ℂ)
64 mulcl 11239 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (𝑦↑2) ∈ ℂ) → (3 · (𝑦↑2)) ∈ ℂ)
6513, 63, 64sylancr 587 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (3 · (𝑦↑2)) ∈ ℂ)
66 divrec2 11939 . . . . . . . . . . . . 13 (((3 · (𝑦↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
6713, 14, 66mp3an23 1455 . . . . . . . . . . . 12 ((3 · (𝑦↑2)) ∈ ℂ → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
688, 65, 673syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
69 divcan3 11948 . . . . . . . . . . . . 13 (((𝑦↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
7013, 14, 69mp3an23 1455 . . . . . . . . . . . 12 ((𝑦↑2) ∈ ℂ → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
718, 63, 703syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
7268, 71eqtr3d 2779 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((1 / 3) · (3 · (𝑦↑2))) = (𝑦↑2))
7372mpteq2ia 5245 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2)))) = (𝑦 ∈ ℝ ↦ (𝑦↑2))
7429, 62, 733eqtri 2769 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (𝑦 ∈ ℝ ↦ (𝑦↑2))
7574a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (𝑦 ∈ ℝ ↦ (𝑦↑2)))
7619adantl 481 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → (3 · 𝑦) ∈ ℂ)
77 3ex 12348 . . . . . . . 8 3 ∈ V
7877a1i 11 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 3 ∈ V)
798adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
80 1red 11262 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
817dvmptid 25995 . . . . . . . . 9 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
8213a1i 11 . . . . . . . . 9 (⊤ → 3 ∈ ℂ)
837, 79, 80, 81, 82dvmptcmul 26002 . . . . . . . 8 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ (3 · 1)))
84 3t1e3 12431 . . . . . . . . 9 (3 · 1) = 3
8584mpteq2i 5247 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (3 · 1)) = (𝑦 ∈ ℝ ↦ 3)
8683, 85eqtrdi 2793 . . . . . . 7 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ 3))
877, 23, 24, 75, 76, 78, 86dvmptsub 26005 . . . . . 6 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑦↑2) − 3)))
88 1re 11261 . . . . . . . 8 1 ∈ ℝ
89 iccssre 13469 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
9088, 2, 89mp2an 692 . . . . . . 7 (1[,]2) ⊆ ℝ
9190a1i 11 . . . . . 6 (⊤ → (1[,]2) ⊆ ℝ)
92 tgioo4 24826 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
93 eqid 2737 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
94 iccntr 24843 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2))
9588, 2, 94mp2an 692 . . . . . . 7 ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2)
9695a1i 11 . . . . . 6 (⊤ → ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2))
977, 21, 22, 87, 91, 92, 93, 96dvmptres2 26000 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)))
98 ioossicc 13473 . . . . . . 7 (1(,)2) ⊆ (1[,]2)
99 resmpt 6055 . . . . . . 7 ((1(,)2) ⊆ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)))
10098, 99ax-mp 5 . . . . . 6 ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3))
10190, 35sstri 3993 . . . . . . . . 9 (1[,]2) ⊆ ℂ
102 resmpt 6055 . . . . . . . . 9 ((1[,]2) ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)))
103101, 102ax-mp 5 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3))
104 eqid 2737 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) = (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))
105 subcl 11507 . . . . . . . . . . . . . 14 (((𝑦↑2) ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑦↑2) − 3) ∈ ℂ)
10613, 105mpan2 691 . . . . . . . . . . . . 13 ((𝑦↑2) ∈ ℂ → ((𝑦↑2) − 3) ∈ ℂ)
10763, 106syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) − 3) ∈ ℂ)
108104, 107fmpti 7132 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ
10934, 108, 343pm3.2i 1340 . . . . . . . . . 10 (ℂ ⊆ ℂ ∧ (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ)
110 ovex 7464 . . . . . . . . . . 11 ((2 · (𝑦↑(2 − 1))) − 0) ∈ V
111 cnelprrecn 11248 . . . . . . . . . . . . . 14 ℂ ∈ {ℝ, ℂ}
112111a1i 11 . . . . . . . . . . . . 13 (⊤ → ℂ ∈ {ℝ, ℂ})
11363adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈ ℂ)
114 ovexd 7466 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → (2 · (𝑦↑(2 − 1))) ∈ V)
115 2nn 12339 . . . . . . . . . . . . . . 15 2 ∈ ℕ
116 dvexp 25991 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
117115, 116ax-mp 5 . . . . . . . . . . . . . 14 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1))))
118117a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
11913a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → 3 ∈ ℂ)
120 c0ex 11255 . . . . . . . . . . . . . 14 0 ∈ V
121120a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → 0 ∈ V)
122112, 82dvmptc 25996 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 3)) = (𝑦 ∈ ℂ ↦ 0))
123112, 113, 114, 118, 119, 121, 122dvmptsub 26005 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = (𝑦 ∈ ℂ ↦ ((2 · (𝑦↑(2 − 1))) − 0)))
124123mptru 1547 . . . . . . . . . . 11 (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = (𝑦 ∈ ℂ ↦ ((2 · (𝑦↑(2 − 1))) − 0))
125110, 124dmmpti 6712 . . . . . . . . . 10 dom (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = ℂ
126 dvcn 25957 . . . . . . . . . 10 (((ℂ ⊆ ℂ ∧ (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = ℂ) → (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ))
127109, 125, 126mp2an 692 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ)
128 rescncf 24923 . . . . . . . . 9 ((1[,]2) ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)))
129101, 127, 128mp2 9 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)
130103, 129eqeltrri 2838 . . . . . . 7 (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ)
131 rescncf 24923 . . . . . . 7 ((1(,)2) ⊆ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) ∈ ((1(,)2)–cn→ℂ)))
13298, 130, 131mp2 9 . . . . . 6 ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) ∈ ((1(,)2)–cn→ℂ)
133100, 132eqeltrri 2838 . . . . 5 (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)) ∈ ((1(,)2)–cn→ℂ)
13497, 133eqeltrdi 2849 . . . 4 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) ∈ ((1(,)2)–cn→ℂ))
13598a1i 11 . . . . . 6 (⊤ → (1(,)2) ⊆ (1[,]2))
136 ioombl 25600 . . . . . . 7 (1(,)2) ∈ dom vol
137136a1i 11 . . . . . 6 (⊤ → (1(,)2) ∈ dom vol)
138 ovexd 7466 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,]2)) → ((𝑦↑2) − 3) ∈ V)
139 cniccibl 25876 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ)) → (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
14088, 2, 130, 139mp3an 1463 . . . . . . 7 (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1
141140a1i 11 . . . . . 6 (⊤ → (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
142135, 137, 138, 141iblss 25840 . . . . 5 (⊤ → (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
14397, 142eqeltrd 2841 . . . 4 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) ∈ 𝐿1)
144 resmpt 6055 . . . . . . 7 ((1[,]2) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))
14590, 144ax-mp 5 . . . . . 6 ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
146 eqid 2737 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
147146, 20fmpti 7132 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ
148 ssid 4006 . . . . . . . . 9 ℝ ⊆ ℝ
14935, 147, 1483pm3.2i 1340 . . . . . . . 8 (ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ ∧ ℝ ⊆ ℝ)
150 ovex 7464 . . . . . . . . 9 ((𝑦↑2) − 3) ∈ V
15187mptru 1547 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑦↑2) − 3))
152150, 151dmmpti 6712 . . . . . . . 8 dom (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = ℝ
153 dvcn 25957 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = ℝ) → (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ))
154149, 152, 153mp2an 692 . . . . . . 7 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ)
155 rescncf 24923 . . . . . . 7 ((1[,]2) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ) → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)))
15690, 154, 155mp2 9 . . . . . 6 ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)
157145, 156eqeltrri 2838 . . . . 5 (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ ((1[,]2)–cn→ℂ)
158157a1i 11 . . . 4 (⊤ → (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ ((1[,]2)–cn→ℂ))
1591, 3, 5, 134, 143, 158ftc2 26085 . . 3 (⊤ → ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)))
160159mptru 1547 . 2 ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1))
161 itgeq2 25813 . . 3 (∀𝑥 ∈ (1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) = ((𝑥↑2) − 3) → ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = ∫(1(,)2)((𝑥↑2) − 3) d𝑥)
162 oveq1 7438 . . . . 5 (𝑦 = 𝑥 → (𝑦↑2) = (𝑥↑2))
163162oveq1d 7446 . . . 4 (𝑦 = 𝑥 → ((𝑦↑2) − 3) = ((𝑥↑2) − 3))
16497mptru 1547 . . . 4 (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3))
165 ovex 7464 . . . 4 ((𝑥↑2) − 3) ∈ V
166163, 164, 165fvmpt 7016 . . 3 (𝑥 ∈ (1(,)2) → ((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) = ((𝑥↑2) − 3))
167161, 166mprg 3067 . 2 ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = ∫(1(,)2)((𝑥↑2) − 3) d𝑥
1682leidi 11797 . . . . . . . . 9 2 ≤ 2
16988, 2elicc2i 13453 . . . . . . . . 9 (2 ∈ (1[,]2) ↔ (2 ∈ ℝ ∧ 1 ≤ 2 ∧ 2 ≤ 2))
1702, 4, 168, 169mpbir3an 1342 . . . . . . . 8 2 ∈ (1[,]2)
171 oveq1 7438 . . . . . . . . . . . 12 (𝑦 = 2 → (𝑦↑3) = (2↑3))
172171oveq1d 7446 . . . . . . . . . . 11 (𝑦 = 2 → ((𝑦↑3) / 3) = ((2↑3) / 3))
173 oveq2 7439 . . . . . . . . . . 11 (𝑦 = 2 → (3 · 𝑦) = (3 · 2))
174172, 173oveq12d 7449 . . . . . . . . . 10 (𝑦 = 2 → (((𝑦↑3) / 3) − (3 · 𝑦)) = (((2↑3) / 3) − (3 · 2)))
175 cu2 14239 . . . . . . . . . . . . 13 (2↑3) = 8
176175oveq1i 7441 . . . . . . . . . . . 12 ((2↑3) / 3) = (8 / 3)
177 3t2e6 12432 . . . . . . . . . . . 12 (3 · 2) = 6
178176, 177oveq12i 7443 . . . . . . . . . . 11 (((2↑3) / 3) − (3 · 2)) = ((8 / 3) − 6)
179 2cn 12341 . . . . . . . . . . . . . . 15 2 ∈ ℂ
180 6cn 12357 . . . . . . . . . . . . . . 15 6 ∈ ℂ
181179, 180, 13, 14divdiri 12024 . . . . . . . . . . . . . 14 ((2 + 6) / 3) = ((2 / 3) + (6 / 3))
182 6p2e8 12425 . . . . . . . . . . . . . . . 16 (6 + 2) = 8
183180, 179, 182addcomli 11453 . . . . . . . . . . . . . . 15 (2 + 6) = 8
184183oveq1i 7441 . . . . . . . . . . . . . 14 ((2 + 6) / 3) = (8 / 3)
185180, 13, 179, 14divmuli 12021 . . . . . . . . . . . . . . . 16 ((6 / 3) = 2 ↔ (3 · 2) = 6)
186177, 185mpbir 231 . . . . . . . . . . . . . . 15 (6 / 3) = 2
187186oveq2i 7442 . . . . . . . . . . . . . 14 ((2 / 3) + (6 / 3)) = ((2 / 3) + 2)
188181, 184, 1873eqtr3i 2773 . . . . . . . . . . . . 13 (8 / 3) = ((2 / 3) + 2)
189188oveq1i 7441 . . . . . . . . . . . 12 ((8 / 3) − 6) = (((2 / 3) + 2) − 6)
190179, 13, 14divcli 12009 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
191 subsub3 11541 . . . . . . . . . . . . 13 (((2 / 3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 / 3) − (6 − 2)) = (((2 / 3) + 2) − 6))
192190, 180, 179, 191mp3an 1463 . . . . . . . . . . . 12 ((2 / 3) − (6 − 2)) = (((2 / 3) + 2) − 6)
193189, 192eqtr4i 2768 . . . . . . . . . . 11 ((8 / 3) − 6) = ((2 / 3) − (6 − 2))
194 4cn 12351 . . . . . . . . . . . . 13 4 ∈ ℂ
195 4p2e6 12419 . . . . . . . . . . . . . 14 (4 + 2) = 6
196194, 179, 195addcomli 11453 . . . . . . . . . . . . 13 (2 + 4) = 6
197180, 179, 194, 196subaddrii 11598 . . . . . . . . . . . 12 (6 − 2) = 4
198197oveq2i 7442 . . . . . . . . . . 11 ((2 / 3) − (6 − 2)) = ((2 / 3) − 4)
199178, 193, 1983eqtri 2769 . . . . . . . . . 10 (((2↑3) / 3) − (3 · 2)) = ((2 / 3) − 4)
200174, 199eqtrdi 2793 . . . . . . . . 9 (𝑦 = 2 → (((𝑦↑3) / 3) − (3 · 𝑦)) = ((2 / 3) − 4))
201 eqid 2737 . . . . . . . . 9 (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
202 ovex 7464 . . . . . . . . 9 ((2 / 3) − 4) ∈ V
203200, 201, 202fvmpt 7016 . . . . . . . 8 (2 ∈ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) = ((2 / 3) − 4))
204170, 203ax-mp 5 . . . . . . 7 ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) = ((2 / 3) − 4)
20588leidi 11797 . . . . . . . . 9 1 ≤ 1
20688, 2elicc2i 13453 . . . . . . . . 9 (1 ∈ (1[,]2) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 ≤ 2))
20788, 205, 4, 206mpbir3an 1342 . . . . . . . 8 1 ∈ (1[,]2)
208 oveq1 7438 . . . . . . . . . . . 12 (𝑦 = 1 → (𝑦↑3) = (1↑3))
209208oveq1d 7446 . . . . . . . . . . 11 (𝑦 = 1 → ((𝑦↑3) / 3) = ((1↑3) / 3))
210 oveq2 7439 . . . . . . . . . . 11 (𝑦 = 1 → (3 · 𝑦) = (3 · 1))
211209, 210oveq12d 7449 . . . . . . . . . 10 (𝑦 = 1 → (((𝑦↑3) / 3) − (3 · 𝑦)) = (((1↑3) / 3) − (3 · 1)))
212 3z 12650 . . . . . . . . . . . . 13 3 ∈ ℤ
213 1exp 14132 . . . . . . . . . . . . 13 (3 ∈ ℤ → (1↑3) = 1)
214212, 213ax-mp 5 . . . . . . . . . . . 12 (1↑3) = 1
215214oveq1i 7441 . . . . . . . . . . 11 ((1↑3) / 3) = (1 / 3)
216215, 84oveq12i 7443 . . . . . . . . . 10 (((1↑3) / 3) − (3 · 1)) = ((1 / 3) − 3)
217211, 216eqtrdi 2793 . . . . . . . . 9 (𝑦 = 1 → (((𝑦↑3) / 3) − (3 · 𝑦)) = ((1 / 3) − 3))
218 ovex 7464 . . . . . . . . 9 ((1 / 3) − 3) ∈ V
219217, 201, 218fvmpt 7016 . . . . . . . 8 (1 ∈ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1) = ((1 / 3) − 3))
220207, 219ax-mp 5 . . . . . . 7 ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1) = ((1 / 3) − 3)
221204, 220oveq12i 7443 . . . . . 6 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = (((2 / 3) − 4) − ((1 / 3) − 3))
222 sub4 11554 . . . . . . 7 ((((2 / 3) ∈ ℂ ∧ 4 ∈ ℂ) ∧ ((1 / 3) ∈ ℂ ∧ 3 ∈ ℂ)) → (((2 / 3) − 4) − ((1 / 3) − 3)) = (((2 / 3) − (1 / 3)) − (4 − 3)))
223190, 194, 59, 13, 222mp4an 693 . . . . . 6 (((2 / 3) − 4) − ((1 / 3) − 3)) = (((2 / 3) − (1 / 3)) − (4 − 3))
22413, 14pm3.2i 470 . . . . . . . . 9 (3 ∈ ℂ ∧ 3 ≠ 0)
225 divsubdir 11961 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 − 1) / 3) = ((2 / 3) − (1 / 3)))
226179, 58, 224, 225mp3an 1463 . . . . . . . 8 ((2 − 1) / 3) = ((2 / 3) − (1 / 3))
227 2m1e1 12392 . . . . . . . . 9 (2 − 1) = 1
228227oveq1i 7441 . . . . . . . 8 ((2 − 1) / 3) = (1 / 3)
229226, 228eqtr3i 2767 . . . . . . 7 ((2 / 3) − (1 / 3)) = (1 / 3)
230 3p1e4 12411 . . . . . . . 8 (3 + 1) = 4
231194, 13, 58, 230subaddrii 11598 . . . . . . 7 (4 − 3) = 1
232229, 231oveq12i 7443 . . . . . 6 (((2 / 3) − (1 / 3)) − (4 − 3)) = ((1 / 3) − 1)
233221, 223, 2323eqtri 2769 . . . . 5 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 / 3) − 1)
23413, 14dividi 12000 . . . . . 6 (3 / 3) = 1
235234oveq2i 7442 . . . . 5 ((1 / 3) − (3 / 3)) = ((1 / 3) − 1)
236233, 235eqtr4i 2768 . . . 4 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 / 3) − (3 / 3))
237 divsubdir 11961 . . . . 5 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 − 3) / 3) = ((1 / 3) − (3 / 3)))
23858, 13, 224, 237mp3an 1463 . . . 4 ((1 − 3) / 3) = ((1 / 3) − (3 / 3))
239236, 238eqtr4i 2768 . . 3 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 − 3) / 3)
240 divneg 11959 . . . . 5 ((2 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(2 / 3) = (-2 / 3))
241179, 13, 14, 240mp3an 1463 . . . 4 -(2 / 3) = (-2 / 3)
24213, 58negsubdi2i 11595 . . . . . 6 -(3 − 1) = (1 − 3)
24340negeqi 11501 . . . . . 6 -(3 − 1) = -2
244242, 243eqtr3i 2767 . . . . 5 (1 − 3) = -2
245244oveq1i 7441 . . . 4 ((1 − 3) / 3) = (-2 / 3)
246241, 245eqtr4i 2768 . . 3 -(2 / 3) = ((1 − 3) / 3)
247239, 246eqtr4i 2768 . 2 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = -(2 / 3)
248160, 167, 2473eqtr3i 2773 1 ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wne 2940  Vcvv 3480  wss 3951  {cpr 4628   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  4c4 12323  6c6 12325  8c8 12327  0cn0 12526  cz 12613  (,)cioo 13387  [,]cicc 13390  cexp 14102  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  intcnt 23025  cnccncf 24902  volcvol 25498  𝐿1cibl 25652  citg 25653   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator