Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhe4.4ex1a Structured version   Visualization version   GIF version

Theorem lhe4.4ex1a 41620
Description: Example of the Fundamental Theorem of Calculus, part two (ftc2 24941): ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 24941 as simply the "Fundamental Theorem of Calculus", then ftc1 24939 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.)
Assertion
Ref Expression
lhe4.4ex1a ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3)

Proof of Theorem lhe4.4ex1a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1red 10834 . . . 4 (⊤ → 1 ∈ ℝ)
2 2re 11904 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
4 1le2 12039 . . . . 5 1 ≤ 2
54a1i 11 . . . 4 (⊤ → 1 ≤ 2)
6 reelprrecn 10821 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
76a1i 11 . . . . . 6 (⊤ → ℝ ∈ {ℝ, ℂ})
8 recn 10819 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
9 3nn0 12108 . . . . . . . . . . 11 3 ∈ ℕ0
10 expcl 13653 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑦↑3) ∈ ℂ)
119, 10mpan2 691 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑦↑3) ∈ ℂ)
128, 11syl 17 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦↑3) ∈ ℂ)
13 3cn 11911 . . . . . . . . . 10 3 ∈ ℂ
14 3ne0 11936 . . . . . . . . . 10 3 ≠ 0
15 divcl 11496 . . . . . . . . . 10 (((𝑦↑3) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑦↑3) / 3) ∈ ℂ)
1613, 14, 15mp3an23 1455 . . . . . . . . 9 ((𝑦↑3) ∈ ℂ → ((𝑦↑3) / 3) ∈ ℂ)
1712, 16syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦↑3) / 3) ∈ ℂ)
18 mulcl 10813 . . . . . . . . 9 ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (3 · 𝑦) ∈ ℂ)
1913, 8, 18sylancr 590 . . . . . . . 8 (𝑦 ∈ ℝ → (3 · 𝑦) ∈ ℂ)
2017, 19subcld 11189 . . . . . . 7 (𝑦 ∈ ℝ → (((𝑦↑3) / 3) − (3 · 𝑦)) ∈ ℂ)
2120adantl 485 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → (((𝑦↑3) / 3) − (3 · 𝑦)) ∈ ℂ)
22 ovexd 7248 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → ((𝑦↑2) − 3) ∈ V)
2317adantl 485 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → ((𝑦↑3) / 3) ∈ ℂ)
24 ovexd 7248 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → (𝑦↑2) ∈ V)
25 divrec2 11507 . . . . . . . . . . . . 13 (((𝑦↑3) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2613, 14, 25mp3an23 1455 . . . . . . . . . . . 12 ((𝑦↑3) ∈ ℂ → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2712, 26syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2827mpteq2ia 5146 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3)) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))
2928oveq2i 7224 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3))))
3012adantl 485 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ ℝ) → (𝑦↑3) ∈ ℂ)
31 ovexd 7248 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ ℝ) → (3 · (𝑦↑2)) ∈ V)
32 eqid 2737 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ (𝑦↑3)) = (𝑦 ∈ ℂ ↦ (𝑦↑3))
3332, 11fmpti 6929 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ ↦ (𝑦↑3)):ℂ⟶ℂ
34 ssid 3923 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
35 ax-resscn 10786 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
36 ovex 7246 . . . . . . . . . . . . . . . 16 (3 · (𝑦↑2)) ∈ V
37 3nn 11909 . . . . . . . . . . . . . . . . . 18 3 ∈ ℕ
38 dvexp 24850 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1)))))
3937, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1))))
40 3m1e2 11958 . . . . . . . . . . . . . . . . . . . 20 (3 − 1) = 2
4140oveq2i 7224 . . . . . . . . . . . . . . . . . . 19 (𝑦↑(3 − 1)) = (𝑦↑2)
4241oveq2i 7224 . . . . . . . . . . . . . . . . . 18 (3 · (𝑦↑(3 − 1))) = (3 · (𝑦↑2))
4342mpteq2i 5147 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1)))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑2)))
4439, 43eqtri 2765 . . . . . . . . . . . . . . . 16 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑2)))
4536, 44dmmpti 6522 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = ℂ
4635, 45sseqtrri 3938 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3)))
47 dvres3 24810 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (𝑦↑3)):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ))
486, 33, 34, 46, 47mp4an 693 . . . . . . . . . . . . 13 (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ)
49 resmpt 5905 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝑦↑3)))
5035, 49ax-mp 5 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝑦↑3))
5150oveq2i 7224 . . . . . . . . . . . . 13 (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3)))
5244reseq1i 5847 . . . . . . . . . . . . . 14 ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ)
53 resmpt 5905 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2))))
5435, 53ax-mp 5 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5552, 54eqtri 2765 . . . . . . . . . . . . 13 ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5648, 51, 553eqtr3i 2773 . . . . . . . . . . . 12 (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3))) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5756a1i 11 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3))) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2))))
58 ax-1cn 10787 . . . . . . . . . . . . 13 1 ∈ ℂ
5958, 13, 14divcli 11574 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
6059a1i 11 . . . . . . . . . . 11 (⊤ → (1 / 3) ∈ ℂ)
617, 30, 31, 57, 60dvmptcmul 24861 . . . . . . . . . 10 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2)))))
6261mptru 1550 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2))))
63 sqcl 13690 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦↑2) ∈ ℂ)
64 mulcl 10813 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (𝑦↑2) ∈ ℂ) → (3 · (𝑦↑2)) ∈ ℂ)
6513, 63, 64sylancr 590 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (3 · (𝑦↑2)) ∈ ℂ)
66 divrec2 11507 . . . . . . . . . . . . 13 (((3 · (𝑦↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
6713, 14, 66mp3an23 1455 . . . . . . . . . . . 12 ((3 · (𝑦↑2)) ∈ ℂ → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
688, 65, 673syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
69 divcan3 11516 . . . . . . . . . . . . 13 (((𝑦↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
7013, 14, 69mp3an23 1455 . . . . . . . . . . . 12 ((𝑦↑2) ∈ ℂ → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
718, 63, 703syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
7268, 71eqtr3d 2779 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((1 / 3) · (3 · (𝑦↑2))) = (𝑦↑2))
7372mpteq2ia 5146 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2)))) = (𝑦 ∈ ℝ ↦ (𝑦↑2))
7429, 62, 733eqtri 2769 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (𝑦 ∈ ℝ ↦ (𝑦↑2))
7574a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (𝑦 ∈ ℝ ↦ (𝑦↑2)))
7619adantl 485 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → (3 · 𝑦) ∈ ℂ)
77 3ex 11912 . . . . . . . 8 3 ∈ V
7877a1i 11 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 3 ∈ V)
798adantl 485 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
80 1red 10834 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
817dvmptid 24854 . . . . . . . . 9 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
8213a1i 11 . . . . . . . . 9 (⊤ → 3 ∈ ℂ)
837, 79, 80, 81, 82dvmptcmul 24861 . . . . . . . 8 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ (3 · 1)))
84 3t1e3 11995 . . . . . . . . 9 (3 · 1) = 3
8584mpteq2i 5147 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (3 · 1)) = (𝑦 ∈ ℝ ↦ 3)
8683, 85eqtrdi 2794 . . . . . . 7 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ 3))
877, 23, 24, 75, 76, 78, 86dvmptsub 24864 . . . . . 6 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑦↑2) − 3)))
88 1re 10833 . . . . . . . 8 1 ∈ ℝ
89 iccssre 13017 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
9088, 2, 89mp2an 692 . . . . . . 7 (1[,]2) ⊆ ℝ
9190a1i 11 . . . . . 6 (⊤ → (1[,]2) ⊆ ℝ)
92 eqid 2737 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9392tgioo2 23700 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
94 iccntr 23718 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2))
9588, 2, 94mp2an 692 . . . . . . 7 ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2)
9695a1i 11 . . . . . 6 (⊤ → ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2))
977, 21, 22, 87, 91, 93, 92, 96dvmptres2 24859 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)))
98 ioossicc 13021 . . . . . . 7 (1(,)2) ⊆ (1[,]2)
99 resmpt 5905 . . . . . . 7 ((1(,)2) ⊆ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)))
10098, 99ax-mp 5 . . . . . 6 ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3))
10190, 35sstri 3910 . . . . . . . . 9 (1[,]2) ⊆ ℂ
102 resmpt 5905 . . . . . . . . 9 ((1[,]2) ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)))
103101, 102ax-mp 5 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3))
104 eqid 2737 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) = (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))
105 subcl 11077 . . . . . . . . . . . . . 14 (((𝑦↑2) ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑦↑2) − 3) ∈ ℂ)
10613, 105mpan2 691 . . . . . . . . . . . . 13 ((𝑦↑2) ∈ ℂ → ((𝑦↑2) − 3) ∈ ℂ)
10763, 106syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) − 3) ∈ ℂ)
108104, 107fmpti 6929 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ
10934, 108, 343pm3.2i 1341 . . . . . . . . . 10 (ℂ ⊆ ℂ ∧ (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ)
110 ovex 7246 . . . . . . . . . . 11 ((2 · (𝑦↑(2 − 1))) − 0) ∈ V
111 cnelprrecn 10822 . . . . . . . . . . . . . 14 ℂ ∈ {ℝ, ℂ}
112111a1i 11 . . . . . . . . . . . . 13 (⊤ → ℂ ∈ {ℝ, ℂ})
11363adantl 485 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈ ℂ)
114 ovexd 7248 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → (2 · (𝑦↑(2 − 1))) ∈ V)
115 2nn 11903 . . . . . . . . . . . . . . 15 2 ∈ ℕ
116 dvexp 24850 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
117115, 116ax-mp 5 . . . . . . . . . . . . . 14 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1))))
118117a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
11913a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → 3 ∈ ℂ)
120 c0ex 10827 . . . . . . . . . . . . . 14 0 ∈ V
121120a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → 0 ∈ V)
122112, 82dvmptc 24855 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 3)) = (𝑦 ∈ ℂ ↦ 0))
123112, 113, 114, 118, 119, 121, 122dvmptsub 24864 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = (𝑦 ∈ ℂ ↦ ((2 · (𝑦↑(2 − 1))) − 0)))
124123mptru 1550 . . . . . . . . . . 11 (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = (𝑦 ∈ ℂ ↦ ((2 · (𝑦↑(2 − 1))) − 0))
125110, 124dmmpti 6522 . . . . . . . . . 10 dom (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = ℂ
126 dvcn 24818 . . . . . . . . . 10 (((ℂ ⊆ ℂ ∧ (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = ℂ) → (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ))
127109, 125, 126mp2an 692 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ)
128 rescncf 23794 . . . . . . . . 9 ((1[,]2) ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)))
129101, 127, 128mp2 9 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)
130103, 129eqeltrri 2835 . . . . . . 7 (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ)
131 rescncf 23794 . . . . . . 7 ((1(,)2) ⊆ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) ∈ ((1(,)2)–cn→ℂ)))
13298, 130, 131mp2 9 . . . . . 6 ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) ∈ ((1(,)2)–cn→ℂ)
133100, 132eqeltrri 2835 . . . . 5 (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)) ∈ ((1(,)2)–cn→ℂ)
13497, 133eqeltrdi 2846 . . . 4 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) ∈ ((1(,)2)–cn→ℂ))
13598a1i 11 . . . . . 6 (⊤ → (1(,)2) ⊆ (1[,]2))
136 ioombl 24462 . . . . . . 7 (1(,)2) ∈ dom vol
137136a1i 11 . . . . . 6 (⊤ → (1(,)2) ∈ dom vol)
138 ovexd 7248 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,]2)) → ((𝑦↑2) − 3) ∈ V)
139 cniccibl 24738 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ)) → (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
14088, 2, 130, 139mp3an 1463 . . . . . . 7 (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1
141140a1i 11 . . . . . 6 (⊤ → (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
142135, 137, 138, 141iblss 24702 . . . . 5 (⊤ → (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
14397, 142eqeltrd 2838 . . . 4 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) ∈ 𝐿1)
144 resmpt 5905 . . . . . . 7 ((1[,]2) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))
14590, 144ax-mp 5 . . . . . 6 ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
146 eqid 2737 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
147146, 20fmpti 6929 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ
148 ssid 3923 . . . . . . . . 9 ℝ ⊆ ℝ
14935, 147, 1483pm3.2i 1341 . . . . . . . 8 (ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ ∧ ℝ ⊆ ℝ)
150 ovex 7246 . . . . . . . . 9 ((𝑦↑2) − 3) ∈ V
15187mptru 1550 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑦↑2) − 3))
152150, 151dmmpti 6522 . . . . . . . 8 dom (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = ℝ
153 dvcn 24818 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = ℝ) → (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ))
154149, 152, 153mp2an 692 . . . . . . 7 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ)
155 rescncf 23794 . . . . . . 7 ((1[,]2) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ) → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)))
15690, 154, 155mp2 9 . . . . . 6 ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)
157145, 156eqeltrri 2835 . . . . 5 (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ ((1[,]2)–cn→ℂ)
158157a1i 11 . . . 4 (⊤ → (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ ((1[,]2)–cn→ℂ))
1591, 3, 5, 134, 143, 158ftc2 24941 . . 3 (⊤ → ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)))
160159mptru 1550 . 2 ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1))
161 itgeq2 24675 . . 3 (∀𝑥 ∈ (1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) = ((𝑥↑2) − 3) → ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = ∫(1(,)2)((𝑥↑2) − 3) d𝑥)
162 oveq1 7220 . . . . 5 (𝑦 = 𝑥 → (𝑦↑2) = (𝑥↑2))
163162oveq1d 7228 . . . 4 (𝑦 = 𝑥 → ((𝑦↑2) − 3) = ((𝑥↑2) − 3))
16497mptru 1550 . . . 4 (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3))
165 ovex 7246 . . . 4 ((𝑥↑2) − 3) ∈ V
166163, 164, 165fvmpt 6818 . . 3 (𝑥 ∈ (1(,)2) → ((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) = ((𝑥↑2) − 3))
167161, 166mprg 3075 . 2 ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = ∫(1(,)2)((𝑥↑2) − 3) d𝑥
1682leidi 11366 . . . . . . . . 9 2 ≤ 2
16988, 2elicc2i 13001 . . . . . . . . 9 (2 ∈ (1[,]2) ↔ (2 ∈ ℝ ∧ 1 ≤ 2 ∧ 2 ≤ 2))
1702, 4, 168, 169mpbir3an 1343 . . . . . . . 8 2 ∈ (1[,]2)
171 oveq1 7220 . . . . . . . . . . . 12 (𝑦 = 2 → (𝑦↑3) = (2↑3))
172171oveq1d 7228 . . . . . . . . . . 11 (𝑦 = 2 → ((𝑦↑3) / 3) = ((2↑3) / 3))
173 oveq2 7221 . . . . . . . . . . 11 (𝑦 = 2 → (3 · 𝑦) = (3 · 2))
174172, 173oveq12d 7231 . . . . . . . . . 10 (𝑦 = 2 → (((𝑦↑3) / 3) − (3 · 𝑦)) = (((2↑3) / 3) − (3 · 2)))
175 cu2 13769 . . . . . . . . . . . . 13 (2↑3) = 8
176175oveq1i 7223 . . . . . . . . . . . 12 ((2↑3) / 3) = (8 / 3)
177 3t2e6 11996 . . . . . . . . . . . 12 (3 · 2) = 6
178176, 177oveq12i 7225 . . . . . . . . . . 11 (((2↑3) / 3) − (3 · 2)) = ((8 / 3) − 6)
179 2cn 11905 . . . . . . . . . . . . . . 15 2 ∈ ℂ
180 6cn 11921 . . . . . . . . . . . . . . 15 6 ∈ ℂ
181179, 180, 13, 14divdiri 11589 . . . . . . . . . . . . . 14 ((2 + 6) / 3) = ((2 / 3) + (6 / 3))
182 6p2e8 11989 . . . . . . . . . . . . . . . 16 (6 + 2) = 8
183180, 179, 182addcomli 11024 . . . . . . . . . . . . . . 15 (2 + 6) = 8
184183oveq1i 7223 . . . . . . . . . . . . . 14 ((2 + 6) / 3) = (8 / 3)
185180, 13, 179, 14divmuli 11586 . . . . . . . . . . . . . . . 16 ((6 / 3) = 2 ↔ (3 · 2) = 6)
186177, 185mpbir 234 . . . . . . . . . . . . . . 15 (6 / 3) = 2
187186oveq2i 7224 . . . . . . . . . . . . . 14 ((2 / 3) + (6 / 3)) = ((2 / 3) + 2)
188181, 184, 1873eqtr3i 2773 . . . . . . . . . . . . 13 (8 / 3) = ((2 / 3) + 2)
189188oveq1i 7223 . . . . . . . . . . . 12 ((8 / 3) − 6) = (((2 / 3) + 2) − 6)
190179, 13, 14divcli 11574 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
191 subsub3 11110 . . . . . . . . . . . . 13 (((2 / 3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 / 3) − (6 − 2)) = (((2 / 3) + 2) − 6))
192190, 180, 179, 191mp3an 1463 . . . . . . . . . . . 12 ((2 / 3) − (6 − 2)) = (((2 / 3) + 2) − 6)
193189, 192eqtr4i 2768 . . . . . . . . . . 11 ((8 / 3) − 6) = ((2 / 3) − (6 − 2))
194 4cn 11915 . . . . . . . . . . . . 13 4 ∈ ℂ
195 4p2e6 11983 . . . . . . . . . . . . . 14 (4 + 2) = 6
196194, 179, 195addcomli 11024 . . . . . . . . . . . . 13 (2 + 4) = 6
197180, 179, 194, 196subaddrii 11167 . . . . . . . . . . . 12 (6 − 2) = 4
198197oveq2i 7224 . . . . . . . . . . 11 ((2 / 3) − (6 − 2)) = ((2 / 3) − 4)
199178, 193, 1983eqtri 2769 . . . . . . . . . 10 (((2↑3) / 3) − (3 · 2)) = ((2 / 3) − 4)
200174, 199eqtrdi 2794 . . . . . . . . 9 (𝑦 = 2 → (((𝑦↑3) / 3) − (3 · 𝑦)) = ((2 / 3) − 4))
201 eqid 2737 . . . . . . . . 9 (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
202 ovex 7246 . . . . . . . . 9 ((2 / 3) − 4) ∈ V
203200, 201, 202fvmpt 6818 . . . . . . . 8 (2 ∈ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) = ((2 / 3) − 4))
204170, 203ax-mp 5 . . . . . . 7 ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) = ((2 / 3) − 4)
20588leidi 11366 . . . . . . . . 9 1 ≤ 1
20688, 2elicc2i 13001 . . . . . . . . 9 (1 ∈ (1[,]2) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 ≤ 2))
20788, 205, 4, 206mpbir3an 1343 . . . . . . . 8 1 ∈ (1[,]2)
208 oveq1 7220 . . . . . . . . . . . 12 (𝑦 = 1 → (𝑦↑3) = (1↑3))
209208oveq1d 7228 . . . . . . . . . . 11 (𝑦 = 1 → ((𝑦↑3) / 3) = ((1↑3) / 3))
210 oveq2 7221 . . . . . . . . . . 11 (𝑦 = 1 → (3 · 𝑦) = (3 · 1))
211209, 210oveq12d 7231 . . . . . . . . . 10 (𝑦 = 1 → (((𝑦↑3) / 3) − (3 · 𝑦)) = (((1↑3) / 3) − (3 · 1)))
212 3z 12210 . . . . . . . . . . . . 13 3 ∈ ℤ
213 1exp 13664 . . . . . . . . . . . . 13 (3 ∈ ℤ → (1↑3) = 1)
214212, 213ax-mp 5 . . . . . . . . . . . 12 (1↑3) = 1
215214oveq1i 7223 . . . . . . . . . . 11 ((1↑3) / 3) = (1 / 3)
216215, 84oveq12i 7225 . . . . . . . . . 10 (((1↑3) / 3) − (3 · 1)) = ((1 / 3) − 3)
217211, 216eqtrdi 2794 . . . . . . . . 9 (𝑦 = 1 → (((𝑦↑3) / 3) − (3 · 𝑦)) = ((1 / 3) − 3))
218 ovex 7246 . . . . . . . . 9 ((1 / 3) − 3) ∈ V
219217, 201, 218fvmpt 6818 . . . . . . . 8 (1 ∈ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1) = ((1 / 3) − 3))
220207, 219ax-mp 5 . . . . . . 7 ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1) = ((1 / 3) − 3)
221204, 220oveq12i 7225 . . . . . 6 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = (((2 / 3) − 4) − ((1 / 3) − 3))
222 sub4 11123 . . . . . . 7 ((((2 / 3) ∈ ℂ ∧ 4 ∈ ℂ) ∧ ((1 / 3) ∈ ℂ ∧ 3 ∈ ℂ)) → (((2 / 3) − 4) − ((1 / 3) − 3)) = (((2 / 3) − (1 / 3)) − (4 − 3)))
223190, 194, 59, 13, 222mp4an 693 . . . . . 6 (((2 / 3) − 4) − ((1 / 3) − 3)) = (((2 / 3) − (1 / 3)) − (4 − 3))
22413, 14pm3.2i 474 . . . . . . . . 9 (3 ∈ ℂ ∧ 3 ≠ 0)
225 divsubdir 11526 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 − 1) / 3) = ((2 / 3) − (1 / 3)))
226179, 58, 224, 225mp3an 1463 . . . . . . . 8 ((2 − 1) / 3) = ((2 / 3) − (1 / 3))
227 2m1e1 11956 . . . . . . . . 9 (2 − 1) = 1
228227oveq1i 7223 . . . . . . . 8 ((2 − 1) / 3) = (1 / 3)
229226, 228eqtr3i 2767 . . . . . . 7 ((2 / 3) − (1 / 3)) = (1 / 3)
230 3p1e4 11975 . . . . . . . 8 (3 + 1) = 4
231194, 13, 58, 230subaddrii 11167 . . . . . . 7 (4 − 3) = 1
232229, 231oveq12i 7225 . . . . . 6 (((2 / 3) − (1 / 3)) − (4 − 3)) = ((1 / 3) − 1)
233221, 223, 2323eqtri 2769 . . . . 5 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 / 3) − 1)
23413, 14dividi 11565 . . . . . 6 (3 / 3) = 1
235234oveq2i 7224 . . . . 5 ((1 / 3) − (3 / 3)) = ((1 / 3) − 1)
236233, 235eqtr4i 2768 . . . 4 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 / 3) − (3 / 3))
237 divsubdir 11526 . . . . 5 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 − 3) / 3) = ((1 / 3) − (3 / 3)))
23858, 13, 224, 237mp3an 1463 . . . 4 ((1 − 3) / 3) = ((1 / 3) − (3 / 3))
239236, 238eqtr4i 2768 . . 3 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 − 3) / 3)
240 divneg 11524 . . . . 5 ((2 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(2 / 3) = (-2 / 3))
241179, 13, 14, 240mp3an 1463 . . . 4 -(2 / 3) = (-2 / 3)
24213, 58negsubdi2i 11164 . . . . . 6 -(3 − 1) = (1 − 3)
24340negeqi 11071 . . . . . 6 -(3 − 1) = -2
244242, 243eqtr3i 2767 . . . . 5 (1 − 3) = -2
245244oveq1i 7223 . . . 4 ((1 − 3) / 3) = (-2 / 3)
246241, 245eqtr4i 2768 . . 3 -(2 / 3) = ((1 − 3) / 3)
247239, 246eqtr4i 2768 . 2 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = -(2 / 3)
248160, 167, 2473eqtr3i 2773 1 ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3)
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1089   = wceq 1543  wtru 1544  wcel 2110  wne 2940  Vcvv 3408  wss 3866  {cpr 4543   class class class wbr 5053  cmpt 5135  dom cdm 5551  ran crn 5552  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  cle 10868  cmin 11062  -cneg 11063   / cdiv 11489  cn 11830  2c2 11885  3c3 11886  4c4 11887  6c6 11889  8c8 11891  0cn0 12090  cz 12176  (,)cioo 12935  [,]cicc 12938  cexp 13635  TopOpenctopn 16926  topGenctg 16942  fldccnfld 20363  intcnt 21914  cnccncf 23773  volcvol 24360  𝐿1cibl 24514  citg 24515   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-symdif 4157  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-ovol 24361  df-vol 24362  df-mbf 24516  df-itg1 24517  df-itg2 24518  df-ibl 24519  df-itg 24520  df-0p 24567  df-limc 24763  df-dv 24764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator