Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhe4.4ex1a Structured version   Visualization version   GIF version

Theorem lhe4.4ex1a 44325
Description: Example of the Fundamental Theorem of Calculus, part two (ftc2 25958): ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 25958 as simply the "Fundamental Theorem of Calculus", then ftc1 25956 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.)
Assertion
Ref Expression
lhe4.4ex1a ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3)

Proof of Theorem lhe4.4ex1a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1red 11182 . . . 4 (⊤ → 1 ∈ ℝ)
2 2re 12267 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (⊤ → 2 ∈ ℝ)
4 1le2 12397 . . . . 5 1 ≤ 2
54a1i 11 . . . 4 (⊤ → 1 ≤ 2)
6 reelprrecn 11167 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
76a1i 11 . . . . . 6 (⊤ → ℝ ∈ {ℝ, ℂ})
8 recn 11165 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
9 3nn0 12467 . . . . . . . . . . 11 3 ∈ ℕ0
10 expcl 14051 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑦↑3) ∈ ℂ)
119, 10mpan2 691 . . . . . . . . . 10 (𝑦 ∈ ℂ → (𝑦↑3) ∈ ℂ)
128, 11syl 17 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦↑3) ∈ ℂ)
13 3cn 12274 . . . . . . . . . 10 3 ∈ ℂ
14 3ne0 12299 . . . . . . . . . 10 3 ≠ 0
15 divcl 11850 . . . . . . . . . 10 (((𝑦↑3) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑦↑3) / 3) ∈ ℂ)
1613, 14, 15mp3an23 1455 . . . . . . . . 9 ((𝑦↑3) ∈ ℂ → ((𝑦↑3) / 3) ∈ ℂ)
1712, 16syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦↑3) / 3) ∈ ℂ)
18 mulcl 11159 . . . . . . . . 9 ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (3 · 𝑦) ∈ ℂ)
1913, 8, 18sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ → (3 · 𝑦) ∈ ℂ)
2017, 19subcld 11540 . . . . . . 7 (𝑦 ∈ ℝ → (((𝑦↑3) / 3) − (3 · 𝑦)) ∈ ℂ)
2120adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → (((𝑦↑3) / 3) − (3 · 𝑦)) ∈ ℂ)
22 ovexd 7425 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ) → ((𝑦↑2) − 3) ∈ V)
2317adantl 481 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → ((𝑦↑3) / 3) ∈ ℂ)
24 ovexd 7425 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → (𝑦↑2) ∈ V)
25 divrec2 11861 . . . . . . . . . . . . 13 (((𝑦↑3) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2613, 14, 25mp3an23 1455 . . . . . . . . . . . 12 ((𝑦↑3) ∈ ℂ → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2712, 26syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝑦↑3) / 3) = ((1 / 3) · (𝑦↑3)))
2827mpteq2ia 5205 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3)) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))
2928oveq2i 7401 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3))))
3012adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ ℝ) → (𝑦↑3) ∈ ℂ)
31 ovexd 7425 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ ℝ) → (3 · (𝑦↑2)) ∈ V)
32 eqid 2730 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ ↦ (𝑦↑3)) = (𝑦 ∈ ℂ ↦ (𝑦↑3))
3332, 11fmpti 7087 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ ↦ (𝑦↑3)):ℂ⟶ℂ
34 ssid 3972 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
35 ax-resscn 11132 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
36 ovex 7423 . . . . . . . . . . . . . . . 16 (3 · (𝑦↑2)) ∈ V
37 3nn 12272 . . . . . . . . . . . . . . . . . 18 3 ∈ ℕ
38 dvexp 25864 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1)))))
3937, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1))))
40 3m1e2 12316 . . . . . . . . . . . . . . . . . . . 20 (3 − 1) = 2
4140oveq2i 7401 . . . . . . . . . . . . . . . . . . 19 (𝑦↑(3 − 1)) = (𝑦↑2)
4241oveq2i 7401 . . . . . . . . . . . . . . . . . 18 (3 · (𝑦↑(3 − 1))) = (3 · (𝑦↑2))
4342mpteq2i 5206 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℂ ↦ (3 · (𝑦↑(3 − 1)))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑2)))
4439, 43eqtri 2753 . . . . . . . . . . . . . . . 16 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = (𝑦 ∈ ℂ ↦ (3 · (𝑦↑2)))
4536, 44dmmpti 6665 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) = ℂ
4635, 45sseqtrri 3999 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3)))
47 dvres3 25821 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (𝑦↑3)):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ))
486, 33, 34, 46, 47mp4an 693 . . . . . . . . . . . . 13 (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ)
49 resmpt 6011 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝑦↑3)))
5035, 49ax-mp 5 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝑦↑3))
5150oveq2i 7401 . . . . . . . . . . . . 13 (ℝ D ((𝑦 ∈ ℂ ↦ (𝑦↑3)) ↾ ℝ)) = (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3)))
5244reseq1i 5949 . . . . . . . . . . . . . 14 ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ)
53 resmpt 6011 . . . . . . . . . . . . . . 15 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2))))
5435, 53ax-mp 5 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ↦ (3 · (𝑦↑2))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5552, 54eqtri 2753 . . . . . . . . . . . . 13 ((ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑3))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5648, 51, 553eqtr3i 2761 . . . . . . . . . . . 12 (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3))) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2)))
5756a1i 11 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦↑3))) = (𝑦 ∈ ℝ ↦ (3 · (𝑦↑2))))
58 ax-1cn 11133 . . . . . . . . . . . . 13 1 ∈ ℂ
5958, 13, 14divcli 11931 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
6059a1i 11 . . . . . . . . . . 11 (⊤ → (1 / 3) ∈ ℂ)
617, 30, 31, 57, 60dvmptcmul 25875 . . . . . . . . . 10 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2)))))
6261mptru 1547 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ ((1 / 3) · (𝑦↑3)))) = (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2))))
63 sqcl 14090 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦↑2) ∈ ℂ)
64 mulcl 11159 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (𝑦↑2) ∈ ℂ) → (3 · (𝑦↑2)) ∈ ℂ)
6513, 63, 64sylancr 587 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (3 · (𝑦↑2)) ∈ ℂ)
66 divrec2 11861 . . . . . . . . . . . . 13 (((3 · (𝑦↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
6713, 14, 66mp3an23 1455 . . . . . . . . . . . 12 ((3 · (𝑦↑2)) ∈ ℂ → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
688, 65, 673syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((3 · (𝑦↑2)) / 3) = ((1 / 3) · (3 · (𝑦↑2))))
69 divcan3 11870 . . . . . . . . . . . . 13 (((𝑦↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
7013, 14, 69mp3an23 1455 . . . . . . . . . . . 12 ((𝑦↑2) ∈ ℂ → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
718, 63, 703syl 18 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((3 · (𝑦↑2)) / 3) = (𝑦↑2))
7268, 71eqtr3d 2767 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((1 / 3) · (3 · (𝑦↑2))) = (𝑦↑2))
7372mpteq2ia 5205 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((1 / 3) · (3 · (𝑦↑2)))) = (𝑦 ∈ ℝ ↦ (𝑦↑2))
7429, 62, 733eqtri 2757 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (𝑦 ∈ ℝ ↦ (𝑦↑2))
7574a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦↑3) / 3))) = (𝑦 ∈ ℝ ↦ (𝑦↑2)))
7619adantl 481 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → (3 · 𝑦) ∈ ℂ)
77 3ex 12275 . . . . . . . 8 3 ∈ V
7877a1i 11 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ) → 3 ∈ V)
798adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
80 1red 11182 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
817dvmptid 25868 . . . . . . . . 9 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
8213a1i 11 . . . . . . . . 9 (⊤ → 3 ∈ ℂ)
837, 79, 80, 81, 82dvmptcmul 25875 . . . . . . . 8 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ (3 · 1)))
84 3t1e3 12353 . . . . . . . . 9 (3 · 1) = 3
8584mpteq2i 5206 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (3 · 1)) = (𝑦 ∈ ℝ ↦ 3)
8683, 85eqtrdi 2781 . . . . . . 7 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ 3))
877, 23, 24, 75, 76, 78, 86dvmptsub 25878 . . . . . 6 (⊤ → (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑦↑2) − 3)))
88 1re 11181 . . . . . . . 8 1 ∈ ℝ
89 iccssre 13397 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → (1[,]2) ⊆ ℝ)
9088, 2, 89mp2an 692 . . . . . . 7 (1[,]2) ⊆ ℝ
9190a1i 11 . . . . . 6 (⊤ → (1[,]2) ⊆ ℝ)
92 tgioo4 24700 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
93 eqid 2730 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
94 iccntr 24717 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2))
9588, 2, 94mp2an 692 . . . . . . 7 ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2)
9695a1i 11 . . . . . 6 (⊤ → ((int‘(topGen‘ran (,)))‘(1[,]2)) = (1(,)2))
977, 21, 22, 87, 91, 92, 93, 96dvmptres2 25873 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)))
98 ioossicc 13401 . . . . . . 7 (1(,)2) ⊆ (1[,]2)
99 resmpt 6011 . . . . . . 7 ((1(,)2) ⊆ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)))
10098, 99ax-mp 5 . . . . . 6 ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3))
10190, 35sstri 3959 . . . . . . . . 9 (1[,]2) ⊆ ℂ
102 resmpt 6011 . . . . . . . . 9 ((1[,]2) ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)))
103101, 102ax-mp 5 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3))
104 eqid 2730 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) = (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))
105 subcl 11427 . . . . . . . . . . . . . 14 (((𝑦↑2) ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑦↑2) − 3) ∈ ℂ)
10613, 105mpan2 691 . . . . . . . . . . . . 13 ((𝑦↑2) ∈ ℂ → ((𝑦↑2) − 3) ∈ ℂ)
10763, 106syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑦↑2) − 3) ∈ ℂ)
108104, 107fmpti 7087 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ
10934, 108, 343pm3.2i 1340 . . . . . . . . . 10 (ℂ ⊆ ℂ ∧ (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ)
110 ovex 7423 . . . . . . . . . . 11 ((2 · (𝑦↑(2 − 1))) − 0) ∈ V
111 cnelprrecn 11168 . . . . . . . . . . . . . 14 ℂ ∈ {ℝ, ℂ}
112111a1i 11 . . . . . . . . . . . . 13 (⊤ → ℂ ∈ {ℝ, ℂ})
11363adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈ ℂ)
114 ovexd 7425 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → (2 · (𝑦↑(2 − 1))) ∈ V)
115 2nn 12266 . . . . . . . . . . . . . . 15 2 ∈ ℕ
116 dvexp 25864 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
117115, 116ax-mp 5 . . . . . . . . . . . . . 14 (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1))))
118117a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
11913a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → 3 ∈ ℂ)
120 c0ex 11175 . . . . . . . . . . . . . 14 0 ∈ V
121120a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ ℂ) → 0 ∈ V)
122112, 82dvmptc 25869 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 3)) = (𝑦 ∈ ℂ ↦ 0))
123112, 113, 114, 118, 119, 121, 122dvmptsub 25878 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = (𝑦 ∈ ℂ ↦ ((2 · (𝑦↑(2 − 1))) − 0)))
124123mptru 1547 . . . . . . . . . . 11 (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = (𝑦 ∈ ℂ ↦ ((2 · (𝑦↑(2 − 1))) − 0))
125110, 124dmmpti 6665 . . . . . . . . . 10 dom (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = ℂ
126 dvcn 25830 . . . . . . . . . 10 (((ℂ ⊆ ℂ ∧ (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3))) = ℂ) → (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ))
127109, 125, 126mp2an 692 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ)
128 rescncf 24797 . . . . . . . . 9 ((1[,]2) ⊆ ℂ → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)))
129101, 127, 128mp2 9 . . . . . . . 8 ((𝑦 ∈ ℂ ↦ ((𝑦↑2) − 3)) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)
130103, 129eqeltrri 2826 . . . . . . 7 (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ)
131 rescncf 24797 . . . . . . 7 ((1(,)2) ⊆ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ) → ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) ∈ ((1(,)2)–cn→ℂ)))
13298, 130, 131mp2 9 . . . . . 6 ((𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ↾ (1(,)2)) ∈ ((1(,)2)–cn→ℂ)
133100, 132eqeltrri 2826 . . . . 5 (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)) ∈ ((1(,)2)–cn→ℂ)
13497, 133eqeltrdi 2837 . . . 4 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) ∈ ((1(,)2)–cn→ℂ))
13598a1i 11 . . . . . 6 (⊤ → (1(,)2) ⊆ (1[,]2))
136 ioombl 25473 . . . . . . 7 (1(,)2) ∈ dom vol
137136a1i 11 . . . . . 6 (⊤ → (1(,)2) ∈ dom vol)
138 ovexd 7425 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,]2)) → ((𝑦↑2) − 3) ∈ V)
139 cniccibl 25749 . . . . . . . 8 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ ((1[,]2)–cn→ℂ)) → (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
14088, 2, 130, 139mp3an 1463 . . . . . . 7 (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1
141140a1i 11 . . . . . 6 (⊤ → (𝑦 ∈ (1[,]2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
142135, 137, 138, 141iblss 25713 . . . . 5 (⊤ → (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3)) ∈ 𝐿1)
14397, 142eqeltrd 2829 . . . 4 (⊤ → (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) ∈ 𝐿1)
144 resmpt 6011 . . . . . . 7 ((1[,]2) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))
14590, 144ax-mp 5 . . . . . 6 ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
146 eqid 2730 . . . . . . . . . 10 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) = (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
147146, 20fmpti 7087 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ
148 ssid 3972 . . . . . . . . 9 ℝ ⊆ ℝ
14935, 147, 1483pm3.2i 1340 . . . . . . . 8 (ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ ∧ ℝ ⊆ ℝ)
150 ovex 7423 . . . . . . . . 9 ((𝑦↑2) − 3) ∈ V
15187mptru 1547 . . . . . . . . 9 (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((𝑦↑2) − 3))
152150, 151dmmpti 6665 . . . . . . . 8 dom (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = ℝ
153 dvcn 25830 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))):ℝ⟶ℂ ∧ ℝ ⊆ ℝ) ∧ dom (ℝ D (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = ℝ) → (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ))
154149, 152, 153mp2an 692 . . . . . . 7 (𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ)
155 rescncf 24797 . . . . . . 7 ((1[,]2) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ (ℝ–cn→ℂ) → ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)))
15690, 154, 155mp2 9 . . . . . 6 ((𝑦 ∈ ℝ ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ↾ (1[,]2)) ∈ ((1[,]2)–cn→ℂ)
157145, 156eqeltrri 2826 . . . . 5 (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ ((1[,]2)–cn→ℂ)
158157a1i 11 . . . 4 (⊤ → (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) ∈ ((1[,]2)–cn→ℂ))
1591, 3, 5, 134, 143, 158ftc2 25958 . . 3 (⊤ → ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)))
160159mptru 1547 . 2 ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1))
161 itgeq2 25686 . . 3 (∀𝑥 ∈ (1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) = ((𝑥↑2) − 3) → ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = ∫(1(,)2)((𝑥↑2) − 3) d𝑥)
162 oveq1 7397 . . . . 5 (𝑦 = 𝑥 → (𝑦↑2) = (𝑥↑2))
163162oveq1d 7405 . . . 4 (𝑦 = 𝑥 → ((𝑦↑2) − 3) = ((𝑥↑2) − 3))
16497mptru 1547 . . . 4 (ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))) = (𝑦 ∈ (1(,)2) ↦ ((𝑦↑2) − 3))
165 ovex 7423 . . . 4 ((𝑥↑2) − 3) ∈ V
166163, 164, 165fvmpt 6971 . . 3 (𝑥 ∈ (1(,)2) → ((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) = ((𝑥↑2) − 3))
167161, 166mprg 3051 . 2 ∫(1(,)2)((ℝ D (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))))‘𝑥) d𝑥 = ∫(1(,)2)((𝑥↑2) − 3) d𝑥
1682leidi 11719 . . . . . . . . 9 2 ≤ 2
16988, 2elicc2i 13380 . . . . . . . . 9 (2 ∈ (1[,]2) ↔ (2 ∈ ℝ ∧ 1 ≤ 2 ∧ 2 ≤ 2))
1702, 4, 168, 169mpbir3an 1342 . . . . . . . 8 2 ∈ (1[,]2)
171 oveq1 7397 . . . . . . . . . . . 12 (𝑦 = 2 → (𝑦↑3) = (2↑3))
172171oveq1d 7405 . . . . . . . . . . 11 (𝑦 = 2 → ((𝑦↑3) / 3) = ((2↑3) / 3))
173 oveq2 7398 . . . . . . . . . . 11 (𝑦 = 2 → (3 · 𝑦) = (3 · 2))
174172, 173oveq12d 7408 . . . . . . . . . 10 (𝑦 = 2 → (((𝑦↑3) / 3) − (3 · 𝑦)) = (((2↑3) / 3) − (3 · 2)))
175 cu2 14172 . . . . . . . . . . . . 13 (2↑3) = 8
176175oveq1i 7400 . . . . . . . . . . . 12 ((2↑3) / 3) = (8 / 3)
177 3t2e6 12354 . . . . . . . . . . . 12 (3 · 2) = 6
178176, 177oveq12i 7402 . . . . . . . . . . 11 (((2↑3) / 3) − (3 · 2)) = ((8 / 3) − 6)
179 2cn 12268 . . . . . . . . . . . . . . 15 2 ∈ ℂ
180 6cn 12284 . . . . . . . . . . . . . . 15 6 ∈ ℂ
181179, 180, 13, 14divdiri 11946 . . . . . . . . . . . . . 14 ((2 + 6) / 3) = ((2 / 3) + (6 / 3))
182 6p2e8 12347 . . . . . . . . . . . . . . . 16 (6 + 2) = 8
183180, 179, 182addcomli 11373 . . . . . . . . . . . . . . 15 (2 + 6) = 8
184183oveq1i 7400 . . . . . . . . . . . . . 14 ((2 + 6) / 3) = (8 / 3)
185180, 13, 179, 14divmuli 11943 . . . . . . . . . . . . . . . 16 ((6 / 3) = 2 ↔ (3 · 2) = 6)
186177, 185mpbir 231 . . . . . . . . . . . . . . 15 (6 / 3) = 2
187186oveq2i 7401 . . . . . . . . . . . . . 14 ((2 / 3) + (6 / 3)) = ((2 / 3) + 2)
188181, 184, 1873eqtr3i 2761 . . . . . . . . . . . . 13 (8 / 3) = ((2 / 3) + 2)
189188oveq1i 7400 . . . . . . . . . . . 12 ((8 / 3) − 6) = (((2 / 3) + 2) − 6)
190179, 13, 14divcli 11931 . . . . . . . . . . . . 13 (2 / 3) ∈ ℂ
191 subsub3 11461 . . . . . . . . . . . . 13 (((2 / 3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 / 3) − (6 − 2)) = (((2 / 3) + 2) − 6))
192190, 180, 179, 191mp3an 1463 . . . . . . . . . . . 12 ((2 / 3) − (6 − 2)) = (((2 / 3) + 2) − 6)
193189, 192eqtr4i 2756 . . . . . . . . . . 11 ((8 / 3) − 6) = ((2 / 3) − (6 − 2))
194 4cn 12278 . . . . . . . . . . . . 13 4 ∈ ℂ
195 4p2e6 12341 . . . . . . . . . . . . . 14 (4 + 2) = 6
196194, 179, 195addcomli 11373 . . . . . . . . . . . . 13 (2 + 4) = 6
197180, 179, 194, 196subaddrii 11518 . . . . . . . . . . . 12 (6 − 2) = 4
198197oveq2i 7401 . . . . . . . . . . 11 ((2 / 3) − (6 − 2)) = ((2 / 3) − 4)
199178, 193, 1983eqtri 2757 . . . . . . . . . 10 (((2↑3) / 3) − (3 · 2)) = ((2 / 3) − 4)
200174, 199eqtrdi 2781 . . . . . . . . 9 (𝑦 = 2 → (((𝑦↑3) / 3) − (3 · 𝑦)) = ((2 / 3) − 4))
201 eqid 2730 . . . . . . . . 9 (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦))) = (𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))
202 ovex 7423 . . . . . . . . 9 ((2 / 3) − 4) ∈ V
203200, 201, 202fvmpt 6971 . . . . . . . 8 (2 ∈ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) = ((2 / 3) − 4))
204170, 203ax-mp 5 . . . . . . 7 ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) = ((2 / 3) − 4)
20588leidi 11719 . . . . . . . . 9 1 ≤ 1
20688, 2elicc2i 13380 . . . . . . . . 9 (1 ∈ (1[,]2) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 ≤ 2))
20788, 205, 4, 206mpbir3an 1342 . . . . . . . 8 1 ∈ (1[,]2)
208 oveq1 7397 . . . . . . . . . . . 12 (𝑦 = 1 → (𝑦↑3) = (1↑3))
209208oveq1d 7405 . . . . . . . . . . 11 (𝑦 = 1 → ((𝑦↑3) / 3) = ((1↑3) / 3))
210 oveq2 7398 . . . . . . . . . . 11 (𝑦 = 1 → (3 · 𝑦) = (3 · 1))
211209, 210oveq12d 7408 . . . . . . . . . 10 (𝑦 = 1 → (((𝑦↑3) / 3) − (3 · 𝑦)) = (((1↑3) / 3) − (3 · 1)))
212 3z 12573 . . . . . . . . . . . . 13 3 ∈ ℤ
213 1exp 14063 . . . . . . . . . . . . 13 (3 ∈ ℤ → (1↑3) = 1)
214212, 213ax-mp 5 . . . . . . . . . . . 12 (1↑3) = 1
215214oveq1i 7400 . . . . . . . . . . 11 ((1↑3) / 3) = (1 / 3)
216215, 84oveq12i 7402 . . . . . . . . . 10 (((1↑3) / 3) − (3 · 1)) = ((1 / 3) − 3)
217211, 216eqtrdi 2781 . . . . . . . . 9 (𝑦 = 1 → (((𝑦↑3) / 3) − (3 · 𝑦)) = ((1 / 3) − 3))
218 ovex 7423 . . . . . . . . 9 ((1 / 3) − 3) ∈ V
219217, 201, 218fvmpt 6971 . . . . . . . 8 (1 ∈ (1[,]2) → ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1) = ((1 / 3) − 3))
220207, 219ax-mp 5 . . . . . . 7 ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1) = ((1 / 3) − 3)
221204, 220oveq12i 7402 . . . . . 6 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = (((2 / 3) − 4) − ((1 / 3) − 3))
222 sub4 11474 . . . . . . 7 ((((2 / 3) ∈ ℂ ∧ 4 ∈ ℂ) ∧ ((1 / 3) ∈ ℂ ∧ 3 ∈ ℂ)) → (((2 / 3) − 4) − ((1 / 3) − 3)) = (((2 / 3) − (1 / 3)) − (4 − 3)))
223190, 194, 59, 13, 222mp4an 693 . . . . . 6 (((2 / 3) − 4) − ((1 / 3) − 3)) = (((2 / 3) − (1 / 3)) − (4 − 3))
22413, 14pm3.2i 470 . . . . . . . . 9 (3 ∈ ℂ ∧ 3 ≠ 0)
225 divsubdir 11883 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 − 1) / 3) = ((2 / 3) − (1 / 3)))
226179, 58, 224, 225mp3an 1463 . . . . . . . 8 ((2 − 1) / 3) = ((2 / 3) − (1 / 3))
227 2m1e1 12314 . . . . . . . . 9 (2 − 1) = 1
228227oveq1i 7400 . . . . . . . 8 ((2 − 1) / 3) = (1 / 3)
229226, 228eqtr3i 2755 . . . . . . 7 ((2 / 3) − (1 / 3)) = (1 / 3)
230 3p1e4 12333 . . . . . . . 8 (3 + 1) = 4
231194, 13, 58, 230subaddrii 11518 . . . . . . 7 (4 − 3) = 1
232229, 231oveq12i 7402 . . . . . 6 (((2 / 3) − (1 / 3)) − (4 − 3)) = ((1 / 3) − 1)
233221, 223, 2323eqtri 2757 . . . . 5 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 / 3) − 1)
23413, 14dividi 11922 . . . . . 6 (3 / 3) = 1
235234oveq2i 7401 . . . . 5 ((1 / 3) − (3 / 3)) = ((1 / 3) − 1)
236233, 235eqtr4i 2756 . . . 4 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 / 3) − (3 / 3))
237 divsubdir 11883 . . . . 5 ((1 ∈ ℂ ∧ 3 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 − 3) / 3) = ((1 / 3) − (3 / 3)))
23858, 13, 224, 237mp3an 1463 . . . 4 ((1 − 3) / 3) = ((1 / 3) − (3 / 3))
239236, 238eqtr4i 2756 . . 3 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = ((1 − 3) / 3)
240 divneg 11881 . . . . 5 ((2 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → -(2 / 3) = (-2 / 3))
241179, 13, 14, 240mp3an 1463 . . . 4 -(2 / 3) = (-2 / 3)
24213, 58negsubdi2i 11515 . . . . . 6 -(3 − 1) = (1 − 3)
24340negeqi 11421 . . . . . 6 -(3 − 1) = -2
244242, 243eqtr3i 2755 . . . . 5 (1 − 3) = -2
245244oveq1i 7400 . . . 4 ((1 − 3) / 3) = (-2 / 3)
246241, 245eqtr4i 2756 . . 3 -(2 / 3) = ((1 − 3) / 3)
247239, 246eqtr4i 2756 . 2 (((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘2) − ((𝑦 ∈ (1[,]2) ↦ (((𝑦↑3) / 3) − (3 · 𝑦)))‘1)) = -(2 / 3)
248160, 167, 2473eqtr3i 2761 1 ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2926  Vcvv 3450  wss 3917  {cpr 4594   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  6c6 12252  8c8 12254  0cn0 12449  cz 12536  (,)cioo 13313  [,]cicc 13316  cexp 14033  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911  cnccncf 24776  volcvol 25371  𝐿1cibl 25525  citg 25526   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator