![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsberglem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for konigsberg 30139: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
konigsberglem5 | ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigsberg.v | . . 3 ⊢ 𝑉 = (0...3) | |
2 | konigsberg.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
3 | konigsberg.g | . . 3 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
4 | 1, 2, 3 | konigsberglem4 30137 | . 2 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
5 | 1 | ovexi 7453 | . . . 4 ⊢ 𝑉 ∈ V |
6 | 5 | rabex 5335 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V |
7 | hashss 14404 | . . 3 ⊢ (({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V ∧ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) | |
8 | 6, 7 | mpan 688 | . 2 ⊢ ({0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
9 | 0ne1 12316 | . . . . . 6 ⊢ 0 ≠ 1 | |
10 | 1re 11246 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
11 | 1lt3 12418 | . . . . . . 7 ⊢ 1 < 3 | |
12 | 10, 11 | ltneii 11359 | . . . . . 6 ⊢ 1 ≠ 3 |
13 | 3ne0 12351 | . . . . . 6 ⊢ 3 ≠ 0 | |
14 | 9, 12, 13 | 3pm3.2i 1336 | . . . . 5 ⊢ (0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) |
15 | c0ex 11240 | . . . . . 6 ⊢ 0 ∈ V | |
16 | 1ex 11242 | . . . . . 6 ⊢ 1 ∈ V | |
17 | 3ex 12327 | . . . . . 6 ⊢ 3 ∈ V | |
18 | hashtpg 14482 | . . . . . 6 ⊢ ((0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V) → ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3)) | |
19 | 15, 16, 17, 18 | mp3an 1457 | . . . . 5 ⊢ ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3) |
20 | 14, 19 | mpbi 229 | . . . 4 ⊢ (♯‘{0, 1, 3}) = 3 |
21 | 20 | breq1i 5156 | . . 3 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
22 | df-3 12309 | . . . . 5 ⊢ 3 = (2 + 1) | |
23 | 22 | breq1i 5156 | . . . 4 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
24 | 2z 12627 | . . . . 5 ⊢ 2 ∈ ℤ | |
25 | fzfi 13973 | . . . . . . . 8 ⊢ (0...3) ∈ Fin | |
26 | 1, 25 | eqeltri 2821 | . . . . . . 7 ⊢ 𝑉 ∈ Fin |
27 | rabfi 9294 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin) | |
28 | hashcl 14351 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0) | |
29 | 26, 27, 28 | mp2b 10 | . . . . . 6 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0 |
30 | 29 | nn0zi 12620 | . . . . 5 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ |
31 | zltp1le 12645 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ) → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))) | |
32 | 24, 30, 31 | mp2an 690 | . . . 4 ⊢ (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
33 | 23, 32 | sylbb2 237 | . . 3 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
34 | 21, 33 | sylbi 216 | . 2 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
35 | 4, 8, 34 | mp2b 10 | 1 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 {crab 3418 Vcvv 3461 ⊆ wss 3944 {cpr 4632 {ctp 4634 〈cop 4636 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 0cc0 11140 1c1 11141 + caddc 11143 < clt 11280 ≤ cle 11281 2c2 12300 3c3 12301 ℕ0cn0 12505 ℤcz 12591 ...cfz 13519 ♯chash 14325 〈“cs7 14833 ∥ cdvds 16234 VtxDegcvtxdg 29351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12506 df-xnn0 12578 df-z 12592 df-uz 12856 df-xadd 13128 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-concat 14557 df-s1 14582 df-s2 14835 df-s3 14836 df-s4 14837 df-s5 14838 df-s6 14839 df-s7 14840 df-dvds 16235 df-vtx 28883 df-iedg 28884 df-vtxdg 29352 |
This theorem is referenced by: konigsberg 30139 |
Copyright terms: Public domain | W3C validator |