| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsberglem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for konigsberg 30186: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsberglem5 | ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigsberg.v | . . 3 ⊢ 𝑉 = (0...3) | |
| 2 | konigsberg.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 3 | konigsberg.g | . . 3 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | konigsberglem4 30184 | . 2 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 5 | 1 | ovexi 7421 | . . . 4 ⊢ 𝑉 ∈ V |
| 6 | 5 | rabex 5294 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V |
| 7 | hashss 14374 | . . 3 ⊢ (({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V ∧ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) | |
| 8 | 6, 7 | mpan 690 | . 2 ⊢ ({0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 9 | 0ne1 12257 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 10 | 1re 11174 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 11 | 1lt3 12354 | . . . . . . 7 ⊢ 1 < 3 | |
| 12 | 10, 11 | ltneii 11287 | . . . . . 6 ⊢ 1 ≠ 3 |
| 13 | 3ne0 12292 | . . . . . 6 ⊢ 3 ≠ 0 | |
| 14 | 9, 12, 13 | 3pm3.2i 1340 | . . . . 5 ⊢ (0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) |
| 15 | c0ex 11168 | . . . . . 6 ⊢ 0 ∈ V | |
| 16 | 1ex 11170 | . . . . . 6 ⊢ 1 ∈ V | |
| 17 | 3ex 12268 | . . . . . 6 ⊢ 3 ∈ V | |
| 18 | hashtpg 14450 | . . . . . 6 ⊢ ((0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V) → ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3)) | |
| 19 | 15, 16, 17, 18 | mp3an 1463 | . . . . 5 ⊢ ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3) |
| 20 | 14, 19 | mpbi 230 | . . . 4 ⊢ (♯‘{0, 1, 3}) = 3 |
| 21 | 20 | breq1i 5114 | . . 3 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 22 | df-3 12250 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 23 | 22 | breq1i 5114 | . . . 4 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 24 | 2z 12565 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 25 | fzfi 13937 | . . . . . . . 8 ⊢ (0...3) ∈ Fin | |
| 26 | 1, 25 | eqeltri 2824 | . . . . . . 7 ⊢ 𝑉 ∈ Fin |
| 27 | rabfi 9214 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin) | |
| 28 | hashcl 14321 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0) | |
| 29 | 26, 27, 28 | mp2b 10 | . . . . . 6 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0 |
| 30 | 29 | nn0zi 12558 | . . . . 5 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ |
| 31 | zltp1le 12583 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ) → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))) | |
| 32 | 24, 30, 31 | mp2an 692 | . . . 4 ⊢ (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 33 | 23, 32 | sylbb2 238 | . . 3 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 34 | 21, 33 | sylbi 217 | . 2 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 35 | 4, 8, 34 | mp2b 10 | 1 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 ⊆ wss 3914 {cpr 4591 {ctp 4593 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 2c2 12241 3c3 12242 ℕ0cn0 12442 ℤcz 12529 ...cfz 13468 ♯chash 14295 〈“cs7 14812 ∥ cdvds 16222 VtxDegcvtxdg 29393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-xadd 13073 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-s4 14816 df-s5 14817 df-s6 14818 df-s7 14819 df-dvds 16223 df-vtx 28925 df-iedg 28926 df-vtxdg 29394 |
| This theorem is referenced by: konigsberg 30186 |
| Copyright terms: Public domain | W3C validator |