MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem5 Structured version   Visualization version   GIF version

Theorem konigsberglem5 27537
Description: Lemma 5 for konigsberg 27538: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem5 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
Distinct variable groups:   𝑥,𝑉   𝑥,𝐺
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem konigsberglem5
StepHypRef Expression
1 konigsberg.v . . 3 𝑉 = (0...3)
2 konigsberg.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
3 konigsberg.g . . 3 𝐺 = ⟨𝑉, 𝐸
41, 2, 3konigsberglem4 27536 . 2 {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
51ovexi 6877 . . . 4 𝑉 ∈ V
65rabex 4975 . . 3 {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V
7 hashss 13401 . . 3 (({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V ∧ {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
86, 7mpan 681 . 2 ({0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
9 0ne1 11345 . . . . . 6 0 ≠ 1
10 1re 10295 . . . . . . 7 1 ∈ ℝ
11 1lt3 11453 . . . . . . 7 1 < 3
1210, 11ltneii 10406 . . . . . 6 1 ≠ 3
13 3ne0 11387 . . . . . 6 3 ≠ 0
149, 12, 133pm3.2i 1438 . . . . 5 (0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0)
15 c0ex 10289 . . . . . 6 0 ∈ V
16 1ex 10291 . . . . . 6 1 ∈ V
17 3ex 11357 . . . . . 6 3 ∈ V
18 hashtpg 13471 . . . . . 6 ((0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V) → ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3))
1915, 16, 17, 18mp3an 1585 . . . . 5 ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3)
2014, 19mpbi 221 . . . 4 (♯‘{0, 1, 3}) = 3
2120breq1i 4818 . . 3 ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 3 ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
22 df-3 11338 . . . . 5 3 = (2 + 1)
2322breq1i 4818 . . . 4 (3 ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
24 2z 11659 . . . . 5 2 ∈ ℤ
25 fzfi 12982 . . . . . . . 8 (0...3) ∈ Fin
261, 25eqeltri 2840 . . . . . . 7 𝑉 ∈ Fin
27 rabfi 8394 . . . . . . 7 (𝑉 ∈ Fin → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin)
28 hashcl 13352 . . . . . . 7 ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0)
2926, 27, 28mp2b 10 . . . . . 6 (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0
3029nn0zi 11652 . . . . 5 (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ
31 zltp1le 11677 . . . . 5 ((2 ∈ ℤ ∧ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ) → (2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})))
3224, 30, 31mp2an 683 . . . 4 (2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
3323, 32sylbb2 229 . . 3 (3 ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
3421, 33sylbi 208 . 2 ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
354, 8, 34mp2b 10 1 2 < (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  w3a 1107   = wceq 1652  wcel 2155  wne 2937  {crab 3059  Vcvv 3350  wss 3734  {cpr 4338  {ctp 4340  cop 4342   class class class wbr 4811  cfv 6070  (class class class)co 6844  Fincfn 8162  0cc0 10191  1c1 10192   + caddc 10194   < clt 10330  cle 10331  2c2 11329  3c3 11330  0cn0 11540  cz 11626  ...cfz 12536  chash 13324  ⟨“cs7 13878  cdvds 15268  VtxDegcvtxdg 26655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-oadd 7770  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-card 9018  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-xnn0 11613  df-z 11627  df-uz 11890  df-xadd 12150  df-fz 12537  df-fzo 12677  df-hash 13325  df-word 13490  df-concat 13545  df-s1 13570  df-s2 13880  df-s3 13881  df-s4 13882  df-s5 13883  df-s6 13884  df-s7 13885  df-dvds 15269  df-vtx 26170  df-iedg 26171  df-vtxdg 26656
This theorem is referenced by:  konigsberg  27538
  Copyright terms: Public domain W3C validator