| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsberglem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for konigsberg 30201: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsberglem5 | ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigsberg.v | . . 3 ⊢ 𝑉 = (0...3) | |
| 2 | konigsberg.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 3 | konigsberg.g | . . 3 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | konigsberglem4 30199 | . 2 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
| 5 | 1 | ovexi 7383 | . . . 4 ⊢ 𝑉 ∈ V |
| 6 | 5 | rabex 5278 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V |
| 7 | hashss 14316 | . . 3 ⊢ (({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V ∧ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) | |
| 8 | 6, 7 | mpan 690 | . 2 ⊢ ({0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} → (♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 9 | 0ne1 12199 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 10 | 1re 11115 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 11 | 1lt3 12296 | . . . . . . 7 ⊢ 1 < 3 | |
| 12 | 10, 11 | ltneii 11229 | . . . . . 6 ⊢ 1 ≠ 3 |
| 13 | 3ne0 12234 | . . . . . 6 ⊢ 3 ≠ 0 | |
| 14 | 9, 12, 13 | 3pm3.2i 1340 | . . . . 5 ⊢ (0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) |
| 15 | c0ex 11109 | . . . . . 6 ⊢ 0 ∈ V | |
| 16 | 1ex 11111 | . . . . . 6 ⊢ 1 ∈ V | |
| 17 | 3ex 12210 | . . . . . 6 ⊢ 3 ∈ V | |
| 18 | hashtpg 14392 | . . . . . 6 ⊢ ((0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V) → ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3)) | |
| 19 | 15, 16, 17, 18 | mp3an 1463 | . . . . 5 ⊢ ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (♯‘{0, 1, 3}) = 3) |
| 20 | 14, 19 | mpbi 230 | . . . 4 ⊢ (♯‘{0, 1, 3}) = 3 |
| 21 | 20 | breq1i 5099 | . . 3 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 22 | df-3 12192 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 23 | 22 | breq1i 5099 | . . . 4 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 24 | 2z 12507 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 25 | fzfi 13879 | . . . . . . . 8 ⊢ (0...3) ∈ Fin | |
| 26 | 1, 25 | eqeltri 2824 | . . . . . . 7 ⊢ 𝑉 ∈ Fin |
| 27 | rabfi 9160 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin) | |
| 28 | hashcl 14263 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0) | |
| 29 | 26, 27, 28 | mp2b 10 | . . . . . 6 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0 |
| 30 | 29 | nn0zi 12500 | . . . . 5 ⊢ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ |
| 31 | zltp1le 12525 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ) → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))) | |
| 32 | 24, 30, 31 | mp2an 692 | . . . 4 ⊢ (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 33 | 23, 32 | sylbb2 238 | . . 3 ⊢ (3 ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 34 | 21, 33 | sylbi 217 | . 2 ⊢ ((♯‘{0, 1, 3}) ≤ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 35 | 4, 8, 34 | mp2b 10 | 1 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 Vcvv 3436 ⊆ wss 3903 {cpr 4579 {ctp 4581 〈cop 4583 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 2c2 12183 3c3 12184 ℕ0cn0 12384 ℤcz 12471 ...cfz 13410 ♯chash 14237 〈“cs7 14753 ∥ cdvds 16163 VtxDegcvtxdg 29411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-xadd 13015 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-s6 14759 df-s7 14760 df-dvds 16164 df-vtx 28943 df-iedg 28944 df-vtxdg 29412 |
| This theorem is referenced by: konigsberg 30201 |
| Copyright terms: Public domain | W3C validator |