| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-2nd | Structured version Visualization version GIF version | ||
| Description: Example for df-2nd 7932. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-2nd | ⊢ (2nd ‘〈3, 4〉) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ex 12228 | . 2 ⊢ 3 ∈ V | |
| 2 | 4re 12230 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 2 | elexi 3461 | . 2 ⊢ 4 ∈ V |
| 4 | 1, 3 | op2nd 7940 | 1 ⊢ (2nd ‘〈3, 4〉) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4585 ‘cfv 6486 2nd c2nd 7930 ℝcr 11027 3c3 12202 4c4 12203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-i2m1 11096 ax-1ne0 11097 ax-rrecex 11100 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-2nd 7932 df-2 12209 df-3 12210 df-4 12211 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |