| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-2nd | Structured version Visualization version GIF version | ||
| Description: Example for df-2nd 7989. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-2nd | ⊢ (2nd ‘〈3, 4〉) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ex 12322 | . 2 ⊢ 3 ∈ V | |
| 2 | 4re 12324 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 2 | elexi 3482 | . 2 ⊢ 4 ∈ V |
| 4 | 1, 3 | op2nd 7997 | 1 ⊢ (2nd ‘〈3, 4〉) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4607 ‘cfv 6531 2nd c2nd 7987 ℝcr 11128 3c3 12296 4c4 12297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-2nd 7989 df-2 12303 df-3 12304 df-4 12305 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |