![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-2nd | Structured version Visualization version GIF version |
Description: Example for df-2nd 7402. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-2nd | ⊢ (2nd ‘〈3, 4〉) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11393 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 1 | elexi 3401 | . 2 ⊢ 3 ∈ V |
3 | 4re 11398 | . . 3 ⊢ 4 ∈ ℝ | |
4 | 3 | elexi 3401 | . 2 ⊢ 4 ∈ V |
5 | 2, 4 | op2nd 7410 | 1 ⊢ (2nd ‘〈3, 4〉) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 〈cop 4374 ‘cfv 6101 2nd c2nd 7400 ℝcr 10223 3c3 11369 4c4 11370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-i2m1 10292 ax-1ne0 10293 ax-rrecex 10296 ax-cnre 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-2nd 7402 df-2 11376 df-3 11377 df-4 11378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |