Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-2nd | Structured version Visualization version GIF version |
Description: Example for df-2nd 7818. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-2nd | ⊢ (2nd ‘〈3, 4〉) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ex 12038 | . 2 ⊢ 3 ∈ V | |
2 | 4re 12040 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 2 | elexi 3449 | . 2 ⊢ 4 ∈ V |
4 | 1, 3 | op2nd 7826 | 1 ⊢ (2nd ‘〈3, 4〉) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 〈cop 4572 ‘cfv 6430 2nd c2nd 7816 ℝcr 10854 3c3 12012 4c4 12013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rrecex 10927 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-2nd 7818 df-2 12019 df-3 12020 df-4 12021 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |