Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-2nd | Structured version Visualization version GIF version |
Description: Example for df-2nd 7864. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-2nd | ⊢ (2nd ‘〈3, 4〉) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ex 12101 | . 2 ⊢ 3 ∈ V | |
2 | 4re 12103 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 2 | elexi 3456 | . 2 ⊢ 4 ∈ V |
4 | 1, 3 | op2nd 7872 | 1 ⊢ (2nd ‘〈3, 4〉) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 〈cop 4571 ‘cfv 6458 2nd c2nd 7862 ℝcr 10916 3c3 12075 4c4 12076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-i2m1 10985 ax-1ne0 10986 ax-rrecex 10989 ax-cnre 10990 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-2nd 7864 df-2 12082 df-3 12083 df-4 12084 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |