![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-2nd | Structured version Visualization version GIF version |
Description: Example for df-2nd 8014. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-2nd | ⊢ (2nd ‘〈3, 4〉) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ex 12346 | . 2 ⊢ 3 ∈ V | |
2 | 4re 12348 | . . 3 ⊢ 4 ∈ ℝ | |
3 | 2 | elexi 3501 | . 2 ⊢ 4 ∈ V |
4 | 1, 3 | op2nd 8022 | 1 ⊢ (2nd ‘〈3, 4〉) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 〈cop 4637 ‘cfv 6563 2nd c2nd 8012 ℝcr 11152 3c3 12320 4c4 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-2nd 8014 df-2 12327 df-3 12328 df-4 12329 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |