MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-2nd Structured version   Visualization version   GIF version

Theorem ex-2nd 30464
Description: Example for df-2nd 8015. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-2nd (2nd ‘⟨3, 4⟩) = 4

Proof of Theorem ex-2nd
StepHypRef Expression
1 3ex 12348 . 2 3 ∈ V
2 4re 12350 . . 3 4 ∈ ℝ
32elexi 3503 . 2 4 ∈ V
41, 3op2nd 8023 1 (2nd ‘⟨3, 4⟩) = 4
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cop 4632  cfv 6561  2nd c2nd 8013  cr 11154  3c3 12322  4c4 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-i2m1 11223  ax-1ne0 11224  ax-rrecex 11227  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-2nd 8015  df-2 12329  df-3 12330  df-4 12331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator