MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-2nd Structured version   Visualization version   GIF version

Theorem ex-2nd 28854
Description: Example for df-2nd 7864. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-2nd (2nd ‘⟨3, 4⟩) = 4

Proof of Theorem ex-2nd
StepHypRef Expression
1 3ex 12101 . 2 3 ∈ V
2 4re 12103 . . 3 4 ∈ ℝ
32elexi 3456 . 2 4 ∈ V
41, 3op2nd 7872 1 (2nd ‘⟨3, 4⟩) = 4
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cop 4571  cfv 6458  2nd c2nd 7862  cr 10916  3c3 12075  4c4 12076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-i2m1 10985  ax-1ne0 10986  ax-rrecex 10989  ax-cnre 10990
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-2nd 7864  df-2 12082  df-3 12083  df-4 12084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator