| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-2nd | Structured version Visualization version GIF version | ||
| Description: Example for df-2nd 8015. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-2nd | ⊢ (2nd ‘〈3, 4〉) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ex 12348 | . 2 ⊢ 3 ∈ V | |
| 2 | 4re 12350 | . . 3 ⊢ 4 ∈ ℝ | |
| 3 | 2 | elexi 3503 | . 2 ⊢ 4 ∈ V |
| 4 | 1, 3 | op2nd 8023 | 1 ⊢ (2nd ‘〈3, 4〉) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 〈cop 4632 ‘cfv 6561 2nd c2nd 8013 ℝcr 11154 3c3 12322 4c4 12323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-i2m1 11223 ax-1ne0 11224 ax-rrecex 11227 ax-cnre 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-2nd 8015 df-2 12329 df-3 12330 df-4 12331 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |