![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem9 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28994. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem9 | ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6921 | . 2 ⊢ (𝑃‘𝐾) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) |
3 | eldifsn 4811 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3)) | |
4 | disjdif 4495 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
5 | 3ex 12375 | . . . . . . 7 ⊢ 3 ∈ V | |
6 | negex 11534 | . . . . . . 7 ⊢ -1 ∈ V | |
7 | 5, 6 | fnsn 6636 | . . . . . 6 ⊢ {〈3, -1〉} Fn {3} |
8 | c0ex 11284 | . . . . . . . 8 ⊢ 0 ∈ V | |
9 | 8 | fconst 6807 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
10 | ffn 6747 | . . . . . . 7 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
12 | fvun2 7014 | . . . . . 6 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) | |
13 | 7, 11, 12 | mp3an12 1451 | . . . . 5 ⊢ ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
14 | 4, 13 | mpan 689 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
15 | 8 | fvconst2 7241 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0) |
16 | 14, 15 | eqtrd 2780 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
17 | 3, 16 | sylbir 235 | . 2 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
18 | 2, 17 | eqtrid 2792 | 1 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 〈cop 4654 × cxp 5698 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 -cneg 11521 3c3 12349 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-neg 11523 df-2 12356 df-3 12357 |
This theorem is referenced by: axlowdimlem16 28990 axlowdimlem17 28991 |
Copyright terms: Public domain | W3C validator |