MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem9 Structured version   Visualization version   GIF version

Theorem axlowdimlem9 27962
Description: Lemma for axlowdim 27973. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem9 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)

Proof of Theorem axlowdimlem9
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6848 . 2 (𝑃𝐾) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾)
3 eldifsn 4752 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3))
4 disjdif 4436 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
5 3ex 12244 . . . . . . 7 3 ∈ V
6 negex 11408 . . . . . . 7 -1 ∈ V
75, 6fnsn 6564 . . . . . 6 {⟨3, -1⟩} Fn {3}
8 c0ex 11158 . . . . . . . 8 0 ∈ V
98fconst 6733 . . . . . . 7 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
10 ffn 6673 . . . . . . 7 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
12 fvun2 6938 . . . . . 6 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
137, 11, 12mp3an12 1451 . . . . 5 ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
144, 13mpan 688 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
158fvconst2 7158 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2771 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
173, 16sylbir 234 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
182, 17eqtrid 2783 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2939  cdif 3910  cun 3911  cin 3912  c0 4287  {csn 4591  cop 4597   × cxp 5636   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  0cc0 11060  1c1 11061  -cneg 11395  3c3 12218  ...cfz 13434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-mulcl 11122  ax-i2m1 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-ov 7365  df-neg 11397  df-2 12225  df-3 12226
This theorem is referenced by:  axlowdimlem16  27969  axlowdimlem17  27970
  Copyright terms: Public domain W3C validator