Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axlowdimlem9 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 27374. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem9 | ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6805 | . 2 ⊢ (𝑃‘𝐾) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) |
3 | eldifsn 4726 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3)) | |
4 | disjdif 4411 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
5 | 3ex 12101 | . . . . . . 7 ⊢ 3 ∈ V | |
6 | negex 11265 | . . . . . . 7 ⊢ -1 ∈ V | |
7 | 5, 6 | fnsn 6521 | . . . . . 6 ⊢ {〈3, -1〉} Fn {3} |
8 | c0ex 11015 | . . . . . . . 8 ⊢ 0 ∈ V | |
9 | 8 | fconst 6690 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
10 | ffn 6630 | . . . . . . 7 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
12 | fvun2 6892 | . . . . . 6 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) | |
13 | 7, 11, 12 | mp3an12 1451 | . . . . 5 ⊢ ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
14 | 4, 13 | mpan 688 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
15 | 8 | fvconst2 7111 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0) |
16 | 14, 15 | eqtrd 2776 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
17 | 3, 16 | sylbir 234 | . 2 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
18 | 2, 17 | eqtrid 2788 | 1 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ∅c0 4262 {csn 4565 〈cop 4571 × cxp 5598 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 0cc0 10917 1c1 10918 -cneg 11252 3c3 12075 ...cfz 13285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-mulcl 10979 ax-i2m1 10985 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-neg 11254 df-2 12082 df-3 12083 |
This theorem is referenced by: axlowdimlem16 27370 axlowdimlem17 27371 |
Copyright terms: Public domain | W3C validator |