| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem9 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28940. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem9 | ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
| 2 | 1 | fveq1i 6877 | . 2 ⊢ (𝑃‘𝐾) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) |
| 3 | eldifsn 4762 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3)) | |
| 4 | disjdif 4447 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
| 5 | 3ex 12322 | . . . . . . 7 ⊢ 3 ∈ V | |
| 6 | negex 11480 | . . . . . . 7 ⊢ -1 ∈ V | |
| 7 | 5, 6 | fnsn 6594 | . . . . . 6 ⊢ {〈3, -1〉} Fn {3} |
| 8 | c0ex 11229 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 9 | 8 | fconst 6764 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
| 10 | ffn 6706 | . . . . . . 7 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
| 12 | fvun2 6971 | . . . . . 6 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) | |
| 13 | 7, 11, 12 | mp3an12 1453 | . . . . 5 ⊢ ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
| 14 | 4, 13 | mpan 690 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
| 15 | 8 | fvconst2 7196 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0) |
| 16 | 14, 15 | eqtrd 2770 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
| 17 | 3, 16 | sylbir 235 | . 2 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
| 18 | 2, 17 | eqtrid 2782 | 1 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 {csn 4601 〈cop 4607 × cxp 5652 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 -cneg 11467 3c3 12296 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-i2m1 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-neg 11469 df-2 12303 df-3 12304 |
| This theorem is referenced by: axlowdimlem16 28936 axlowdimlem17 28937 |
| Copyright terms: Public domain | W3C validator |