Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axlowdimlem9 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 27310. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem9 | ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6769 | . 2 ⊢ (𝑃‘𝐾) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) |
3 | eldifsn 4725 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3)) | |
4 | disjdif 4410 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
5 | 3ex 12038 | . . . . . . 7 ⊢ 3 ∈ V | |
6 | negex 11202 | . . . . . . 7 ⊢ -1 ∈ V | |
7 | 5, 6 | fnsn 6488 | . . . . . 6 ⊢ {〈3, -1〉} Fn {3} |
8 | c0ex 10953 | . . . . . . . 8 ⊢ 0 ∈ V | |
9 | 8 | fconst 6656 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
10 | ffn 6596 | . . . . . . 7 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
12 | fvun2 6854 | . . . . . 6 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) | |
13 | 7, 11, 12 | mp3an12 1449 | . . . . 5 ⊢ ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
14 | 4, 13 | mpan 686 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
15 | 8 | fvconst2 7073 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0) |
16 | 14, 15 | eqtrd 2779 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
17 | 3, 16 | sylbir 234 | . 2 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
18 | 2, 17 | eqtrid 2791 | 1 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∖ cdif 3888 ∪ cun 3889 ∩ cin 3890 ∅c0 4261 {csn 4566 〈cop 4572 × cxp 5586 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 -cneg 11189 3c3 12012 ...cfz 13221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-mulcl 10917 ax-i2m1 10923 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-neg 11191 df-2 12019 df-3 12020 |
This theorem is referenced by: axlowdimlem16 27306 axlowdimlem17 27307 |
Copyright terms: Public domain | W3C validator |