MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem9 Structured version   Visualization version   GIF version

Theorem axlowdimlem9 28929
Description: Lemma for axlowdim 28940. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem9 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)

Proof of Theorem axlowdimlem9
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6823 . 2 (𝑃𝐾) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾)
3 eldifsn 4738 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3))
4 disjdif 4422 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
5 3ex 12207 . . . . . . 7 3 ∈ V
6 negex 11358 . . . . . . 7 -1 ∈ V
75, 6fnsn 6539 . . . . . 6 {⟨3, -1⟩} Fn {3}
8 c0ex 11106 . . . . . . . 8 0 ∈ V
98fconst 6709 . . . . . . 7 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
10 ffn 6651 . . . . . . 7 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
12 fvun2 6914 . . . . . 6 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
137, 11, 12mp3an12 1453 . . . . 5 ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
144, 13mpan 690 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
158fvconst2 7138 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2766 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
173, 16sylbir 235 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
182, 17eqtrid 2778 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3899  cun 3900  cin 3901  c0 4283  {csn 4576  cop 4582   × cxp 5614   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  -cneg 11345  3c3 12181  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-i2m1 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-neg 11347  df-2 12188  df-3 12189
This theorem is referenced by:  axlowdimlem16  28936  axlowdimlem17  28937
  Copyright terms: Public domain W3C validator