MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem9 Structured version   Visualization version   GIF version

Theorem axlowdimlem9 28980
Description: Lemma for axlowdim 28991. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem9 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)

Proof of Theorem axlowdimlem9
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6908 . 2 (𝑃𝐾) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾)
3 eldifsn 4791 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3))
4 disjdif 4478 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
5 3ex 12346 . . . . . . 7 3 ∈ V
6 negex 11504 . . . . . . 7 -1 ∈ V
75, 6fnsn 6626 . . . . . 6 {⟨3, -1⟩} Fn {3}
8 c0ex 11253 . . . . . . . 8 0 ∈ V
98fconst 6795 . . . . . . 7 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
10 ffn 6737 . . . . . . 7 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
12 fvun2 7001 . . . . . 6 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
137, 11, 12mp3an12 1450 . . . . 5 ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
144, 13mpan 690 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
158fvconst2 7224 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2775 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
173, 16sylbir 235 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
182, 17eqtrid 2787 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  cun 3961  cin 3962  c0 4339  {csn 4631  cop 4637   × cxp 5687   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  -cneg 11491  3c3 12320  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-i2m1 11221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-neg 11493  df-2 12327  df-3 12328
This theorem is referenced by:  axlowdimlem16  28987  axlowdimlem17  28988
  Copyright terms: Public domain W3C validator