MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem9 Structured version   Visualization version   GIF version

Theorem axlowdimlem9 27363
Description: Lemma for axlowdim 27374. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem9 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)

Proof of Theorem axlowdimlem9
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6805 . 2 (𝑃𝐾) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾)
3 eldifsn 4726 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3))
4 disjdif 4411 . . . . 5 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
5 3ex 12101 . . . . . . 7 3 ∈ V
6 negex 11265 . . . . . . 7 -1 ∈ V
75, 6fnsn 6521 . . . . . 6 {⟨3, -1⟩} Fn {3}
8 c0ex 11015 . . . . . . . 8 0 ∈ V
98fconst 6690 . . . . . . 7 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
10 ffn 6630 . . . . . . 7 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
12 fvun2 6892 . . . . . 6 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
137, 11, 12mp3an12 1451 . . . . 5 ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
144, 13mpan 688 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾))
158fvconst2 7111 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2776 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
173, 16sylbir 234 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0)
182, 17eqtrid 2788 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  cdif 3889  cun 3890  cin 3891  c0 4262  {csn 4565  cop 4571   × cxp 5598   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  0cc0 10917  1c1 10918  -cneg 11252  3c3 12075  ...cfz 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-mulcl 10979  ax-i2m1 10985
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-ov 7310  df-neg 11254  df-2 12082  df-3 12083
This theorem is referenced by:  axlowdimlem16  27370  axlowdimlem17  27371
  Copyright terms: Public domain W3C validator