Step | Hyp | Ref
| Expression |
1 | | abrexexg 7950 |
. . . . . 6
β’ (π΄ β π β {π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)} β V) |
2 | | vex 3477 |
. . . . . . . . 9
β’ π¦ β V |
3 | | eqeq1 2735 |
. . . . . . . . . 10
β’ (π§ = π¦ β (π§ = (cardβπ΅) β π¦ = (cardβπ΅))) |
4 | 3 | rexbidv 3177 |
. . . . . . . . 9
β’ (π§ = π¦ β (βπ₯ β π΄ π§ = (cardβπ΅) β βπ₯ β π΄ π¦ = (cardβπ΅))) |
5 | 2, 4 | elab 3668 |
. . . . . . . 8
β’ (π¦ β {π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)} β βπ₯ β π΄ π¦ = (cardβπ΅)) |
6 | | cardidm 9957 |
. . . . . . . . . 10
β’
(cardβ(cardβπ΅)) = (cardβπ΅) |
7 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π¦ = (cardβπ΅) β (cardβπ¦) = (cardβ(cardβπ΅))) |
8 | | id 22 |
. . . . . . . . . 10
β’ (π¦ = (cardβπ΅) β π¦ = (cardβπ΅)) |
9 | 6, 7, 8 | 3eqtr4a 2797 |
. . . . . . . . 9
β’ (π¦ = (cardβπ΅) β (cardβπ¦) = π¦) |
10 | 9 | rexlimivw 3150 |
. . . . . . . 8
β’
(βπ₯ β
π΄ π¦ = (cardβπ΅) β (cardβπ¦) = π¦) |
11 | 5, 10 | sylbi 216 |
. . . . . . 7
β’ (π¦ β {π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)} β (cardβπ¦) = π¦) |
12 | 11 | rgen 3062 |
. . . . . 6
β’
βπ¦ β
{π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)} (cardβπ¦) = π¦ |
13 | | carduni 9979 |
. . . . . 6
β’ ({π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)} β V β (βπ¦ β {π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)} (cardβπ¦) = π¦ β (cardββͺ {π§
β£ βπ₯ β
π΄ π§ = (cardβπ΅)}) = βͺ {π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)})) |
14 | 1, 12, 13 | mpisyl 21 |
. . . . 5
β’ (π΄ β π β (cardββͺ {π§
β£ βπ₯ β
π΄ π§ = (cardβπ΅)}) = βͺ {π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)}) |
15 | | fvex 6904 |
. . . . . . 7
β’
(cardβπ΅)
β V |
16 | 15 | dfiun2 5036 |
. . . . . 6
β’ βͺ π₯ β π΄ (cardβπ΅) = βͺ {π§ β£ βπ₯ β π΄ π§ = (cardβπ΅)} |
17 | 16 | fveq2i 6894 |
. . . . 5
β’
(cardββͺ π₯ β π΄ (cardβπ΅)) = (cardββͺ {π§
β£ βπ₯ β
π΄ π§ = (cardβπ΅)}) |
18 | 14, 17, 16 | 3eqtr4g 2796 |
. . . 4
β’ (π΄ β π β (cardββͺ π₯ β π΄ (cardβπ΅)) = βͺ
π₯ β π΄ (cardβπ΅)) |
19 | 18 | adantr 480 |
. . 3
β’ ((π΄ β π β§ βπ₯ β π΄ (cardβπ΅) = π΅) β (cardββͺ π₯ β π΄ (cardβπ΅)) = βͺ
π₯ β π΄ (cardβπ΅)) |
20 | | iuneq2 5016 |
. . . . 5
β’
(βπ₯ β
π΄ (cardβπ΅) = π΅ β βͺ
π₯ β π΄ (cardβπ΅) = βͺ
π₯ β π΄ π΅) |
21 | 20 | adantl 481 |
. . . 4
β’ ((π΄ β π β§ βπ₯ β π΄ (cardβπ΅) = π΅) β βͺ
π₯ β π΄ (cardβπ΅) = βͺ
π₯ β π΄ π΅) |
22 | 21 | fveq2d 6895 |
. . 3
β’ ((π΄ β π β§ βπ₯ β π΄ (cardβπ΅) = π΅) β (cardββͺ π₯ β π΄ (cardβπ΅)) = (cardββͺ π₯ β π΄ π΅)) |
23 | 19, 22, 21 | 3eqtr3d 2779 |
. 2
β’ ((π΄ β π β§ βπ₯ β π΄ (cardβπ΅) = π΅) β (cardββͺ π₯ β π΄ π΅) = βͺ
π₯ β π΄ π΅) |
24 | 23 | ex 412 |
1
β’ (π΄ β π β (βπ₯ β π΄ (cardβπ΅) = π΅ β (cardββͺ π₯ β π΄ π΅) = βͺ
π₯ β π΄ π΅)) |