MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardiun Structured version   Visualization version   GIF version

Theorem cardiun 9980
Description: The indexed union of a set of cardinals is a cardinal. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
cardiun (𝐴 ∈ 𝑉 β†’ (βˆ€π‘₯ ∈ 𝐴 (cardβ€˜π΅) = 𝐡 β†’ (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 𝐡) = βˆͺ π‘₯ ∈ 𝐴 𝐡))
Distinct variable group:   π‘₯,𝐴
Allowed substitution hints:   𝐡(π‘₯)   𝑉(π‘₯)

Proof of Theorem cardiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abrexexg 7950 . . . . . 6 (𝐴 ∈ 𝑉 β†’ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)} ∈ V)
2 vex 3477 . . . . . . . . 9 𝑦 ∈ V
3 eqeq1 2735 . . . . . . . . . 10 (𝑧 = 𝑦 β†’ (𝑧 = (cardβ€˜π΅) ↔ 𝑦 = (cardβ€˜π΅)))
43rexbidv 3177 . . . . . . . . 9 (𝑧 = 𝑦 β†’ (βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅) ↔ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (cardβ€˜π΅)))
52, 4elab 3668 . . . . . . . 8 (𝑦 ∈ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)} ↔ βˆƒπ‘₯ ∈ 𝐴 𝑦 = (cardβ€˜π΅))
6 cardidm 9957 . . . . . . . . . 10 (cardβ€˜(cardβ€˜π΅)) = (cardβ€˜π΅)
7 fveq2 6891 . . . . . . . . . 10 (𝑦 = (cardβ€˜π΅) β†’ (cardβ€˜π‘¦) = (cardβ€˜(cardβ€˜π΅)))
8 id 22 . . . . . . . . . 10 (𝑦 = (cardβ€˜π΅) β†’ 𝑦 = (cardβ€˜π΅))
96, 7, 83eqtr4a 2797 . . . . . . . . 9 (𝑦 = (cardβ€˜π΅) β†’ (cardβ€˜π‘¦) = 𝑦)
109rexlimivw 3150 . . . . . . . 8 (βˆƒπ‘₯ ∈ 𝐴 𝑦 = (cardβ€˜π΅) β†’ (cardβ€˜π‘¦) = 𝑦)
115, 10sylbi 216 . . . . . . 7 (𝑦 ∈ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)} β†’ (cardβ€˜π‘¦) = 𝑦)
1211rgen 3062 . . . . . 6 βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)} (cardβ€˜π‘¦) = 𝑦
13 carduni 9979 . . . . . 6 ({𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)} ∈ V β†’ (βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)} (cardβ€˜π‘¦) = 𝑦 β†’ (cardβ€˜βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)}) = βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)}))
141, 12, 13mpisyl 21 . . . . 5 (𝐴 ∈ 𝑉 β†’ (cardβ€˜βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)}) = βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)})
15 fvex 6904 . . . . . . 7 (cardβ€˜π΅) ∈ V
1615dfiun2 5036 . . . . . 6 βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅) = βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)}
1716fveq2i 6894 . . . . 5 (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅)) = (cardβ€˜βˆͺ {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (cardβ€˜π΅)})
1814, 17, 163eqtr4g 2796 . . . 4 (𝐴 ∈ 𝑉 β†’ (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅)) = βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅))
1918adantr 480 . . 3 ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 (cardβ€˜π΅) = 𝐡) β†’ (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅)) = βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅))
20 iuneq2 5016 . . . . 5 (βˆ€π‘₯ ∈ 𝐴 (cardβ€˜π΅) = 𝐡 β†’ βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅) = βˆͺ π‘₯ ∈ 𝐴 𝐡)
2120adantl 481 . . . 4 ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 (cardβ€˜π΅) = 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅) = βˆͺ π‘₯ ∈ 𝐴 𝐡)
2221fveq2d 6895 . . 3 ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 (cardβ€˜π΅) = 𝐡) β†’ (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 (cardβ€˜π΅)) = (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 𝐡))
2319, 22, 213eqtr3d 2779 . 2 ((𝐴 ∈ 𝑉 ∧ βˆ€π‘₯ ∈ 𝐴 (cardβ€˜π΅) = 𝐡) β†’ (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 𝐡) = βˆͺ π‘₯ ∈ 𝐴 𝐡)
2423ex 412 1 (𝐴 ∈ 𝑉 β†’ (βˆ€π‘₯ ∈ 𝐴 (cardβ€˜π΅) = 𝐡 β†’ (cardβ€˜βˆͺ π‘₯ ∈ 𝐴 𝐡) = βˆͺ π‘₯ ∈ 𝐴 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {cab 2708  βˆ€wral 3060  βˆƒwrex 3069  Vcvv 3473  βˆͺ cuni 4908  βˆͺ ciun 4997  β€˜cfv 6543  cardccrd 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-card 9937
This theorem is referenced by:  alephcard  10068
  Copyright terms: Public domain W3C validator