MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardiun Structured version   Visualization version   GIF version

Theorem cardiun 10021
Description: The indexed union of a set of cardinals is a cardinal. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
cardiun (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem cardiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abrexexg 7973 . . . . . 6 (𝐴𝑉 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V)
2 vex 3465 . . . . . . . . 9 𝑦 ∈ V
3 eqeq1 2729 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (card‘𝐵) ↔ 𝑦 = (card‘𝐵)))
43rexbidv 3168 . . . . . . . . 9 (𝑧 = 𝑦 → (∃𝑥𝐴 𝑧 = (card‘𝐵) ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵)))
52, 4elab 3665 . . . . . . . 8 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵))
6 cardidm 9998 . . . . . . . . . 10 (card‘(card‘𝐵)) = (card‘𝐵)
7 fveq2 6900 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → (card‘𝑦) = (card‘(card‘𝐵)))
8 id 22 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → 𝑦 = (card‘𝐵))
96, 7, 83eqtr4a 2791 . . . . . . . . 9 (𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
109rexlimivw 3140 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
115, 10sylbi 216 . . . . . . 7 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} → (card‘𝑦) = 𝑦)
1211rgen 3052 . . . . . 6 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦
13 carduni 10020 . . . . . 6 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V → (∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}))
141, 12, 13mpisyl 21 . . . . 5 (𝐴𝑉 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
15 fvex 6913 . . . . . . 7 (card‘𝐵) ∈ V
1615dfiun2 5040 . . . . . 6 𝑥𝐴 (card‘𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}
1716fveq2i 6903 . . . . 5 (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
1814, 17, 163eqtr4g 2790 . . . 4 (𝐴𝑉 → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
1918adantr 479 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
20 iuneq2 5019 . . . . 5 (∀𝑥𝐴 (card‘𝐵) = 𝐵 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2120adantl 480 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2221fveq2d 6904 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ 𝑥𝐴 𝐵))
2319, 22, 213eqtr3d 2773 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
2423ex 411 1 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wral 3050  wrex 3059  Vcvv 3461   cuni 4912   ciun 5000  cfv 6553  cardccrd 9974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-ord 6378  df-on 6379  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-card 9978
This theorem is referenced by:  alephcard  10109
  Copyright terms: Public domain W3C validator