Step | Hyp | Ref
| Expression |
1 | | abrexexg 7790 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)} ∈ V) |
2 | | vex 3434 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
3 | | eqeq1 2743 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝑧 = (card‘𝐵) ↔ 𝑦 = (card‘𝐵))) |
4 | 3 | rexbidv 3227 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (card‘𝐵))) |
5 | 2, 4 | elab 3610 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)} ↔ ∃𝑥 ∈ 𝐴 𝑦 = (card‘𝐵)) |
6 | | cardidm 9701 |
. . . . . . . . . 10
⊢
(card‘(card‘𝐵)) = (card‘𝐵) |
7 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑦 = (card‘𝐵) → (card‘𝑦) = (card‘(card‘𝐵))) |
8 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 = (card‘𝐵) → 𝑦 = (card‘𝐵)) |
9 | 6, 7, 8 | 3eqtr4a 2805 |
. . . . . . . . 9
⊢ (𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦) |
10 | 9 | rexlimivw 3212 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦) |
11 | 5, 10 | sylbi 216 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)} → (card‘𝑦) = 𝑦) |
12 | 11 | rgen 3075 |
. . . . . 6
⊢
∀𝑦 ∈
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦 |
13 | | carduni 9723 |
. . . . . 6
⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)} ∈ V → (∀𝑦 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦 → (card‘∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = (card‘𝐵)}) = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)})) |
14 | 1, 12, 13 | mpisyl 21 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (card‘∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = (card‘𝐵)}) = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)}) |
15 | | fvex 6781 |
. . . . . . 7
⊢
(card‘𝐵)
∈ V |
16 | 15 | dfiun2 4967 |
. . . . . 6
⊢ ∪ 𝑥 ∈ 𝐴 (card‘𝐵) = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (card‘𝐵)} |
17 | 16 | fveq2i 6771 |
. . . . 5
⊢
(card‘∪ 𝑥 ∈ 𝐴 (card‘𝐵)) = (card‘∪ {𝑧
∣ ∃𝑥 ∈
𝐴 𝑧 = (card‘𝐵)}) |
18 | 14, 17, 16 | 3eqtr4g 2804 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (card‘∪ 𝑥 ∈ 𝐴 (card‘𝐵)) = ∪
𝑥 ∈ 𝐴 (card‘𝐵)) |
19 | 18 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝐵) = 𝐵) → (card‘∪ 𝑥 ∈ 𝐴 (card‘𝐵)) = ∪
𝑥 ∈ 𝐴 (card‘𝐵)) |
20 | | iuneq2 4948 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (card‘𝐵) = 𝐵 → ∪
𝑥 ∈ 𝐴 (card‘𝐵) = ∪
𝑥 ∈ 𝐴 𝐵) |
21 | 20 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝐵) = 𝐵) → ∪
𝑥 ∈ 𝐴 (card‘𝐵) = ∪
𝑥 ∈ 𝐴 𝐵) |
22 | 21 | fveq2d 6772 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝐵) = 𝐵) → (card‘∪ 𝑥 ∈ 𝐴 (card‘𝐵)) = (card‘∪ 𝑥 ∈ 𝐴 𝐵)) |
23 | 19, 22, 21 | 3eqtr3d 2787 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝐵) = 𝐵) → (card‘∪ 𝑥 ∈ 𝐴 𝐵) = ∪
𝑥 ∈ 𝐴 𝐵) |
24 | 23 | ex 412 |
1
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (card‘𝐵) = 𝐵 → (card‘∪ 𝑥 ∈ 𝐴 𝐵) = ∪
𝑥 ∈ 𝐴 𝐵)) |