MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardiun Structured version   Visualization version   GIF version

Theorem cardiun 9784
Description: The indexed union of a set of cardinals is a cardinal. (Contributed by NM, 3-Nov-2003.)
Assertion
Ref Expression
cardiun (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem cardiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abrexexg 7835 . . . . . 6 (𝐴𝑉 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V)
2 vex 3441 . . . . . . . . 9 𝑦 ∈ V
3 eqeq1 2740 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑧 = (card‘𝐵) ↔ 𝑦 = (card‘𝐵)))
43rexbidv 3172 . . . . . . . . 9 (𝑧 = 𝑦 → (∃𝑥𝐴 𝑧 = (card‘𝐵) ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵)))
52, 4elab 3614 . . . . . . . 8 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ↔ ∃𝑥𝐴 𝑦 = (card‘𝐵))
6 cardidm 9761 . . . . . . . . . 10 (card‘(card‘𝐵)) = (card‘𝐵)
7 fveq2 6804 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → (card‘𝑦) = (card‘(card‘𝐵)))
8 id 22 . . . . . . . . . 10 (𝑦 = (card‘𝐵) → 𝑦 = (card‘𝐵))
96, 7, 83eqtr4a 2802 . . . . . . . . 9 (𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
109rexlimivw 3145 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (card‘𝐵) → (card‘𝑦) = 𝑦)
115, 10sylbi 216 . . . . . . 7 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} → (card‘𝑦) = 𝑦)
1211rgen 3064 . . . . . 6 𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦
13 carduni 9783 . . . . . 6 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} ∈ V → (∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)} (card‘𝑦) = 𝑦 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}))
141, 12, 13mpisyl 21 . . . . 5 (𝐴𝑉 → (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
15 fvex 6817 . . . . . . 7 (card‘𝐵) ∈ V
1615dfiun2 4970 . . . . . 6 𝑥𝐴 (card‘𝐵) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)}
1716fveq2i 6807 . . . . 5 (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (card‘𝐵)})
1814, 17, 163eqtr4g 2801 . . . 4 (𝐴𝑉 → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
1918adantr 482 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = 𝑥𝐴 (card‘𝐵))
20 iuneq2 4950 . . . . 5 (∀𝑥𝐴 (card‘𝐵) = 𝐵 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2120adantl 483 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → 𝑥𝐴 (card‘𝐵) = 𝑥𝐴 𝐵)
2221fveq2d 6808 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 (card‘𝐵)) = (card‘ 𝑥𝐴 𝐵))
2319, 22, 213eqtr3d 2784 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝐵) = 𝐵) → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
2423ex 414 1 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝐵) = 𝐵 → (card‘ 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  {cab 2713  wral 3062  wrex 3071  Vcvv 3437   cuni 4844   ciun 4931  cfv 6458  cardccrd 9737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-card 9741
This theorem is referenced by:  alephcard  9872
  Copyright terms: Public domain W3C validator