![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvresex | Structured version Visualization version GIF version |
Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvresex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fvresex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4006 | . . . . . . . 8 ⊢ 𝐴 ⊆ V | |
2 | resmpt 6046 | . . . . . . . 8 ⊢ (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) |
4 | 3 | fveq1i 6903 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) |
5 | fveq2 6902 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
6 | eqid 2728 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ (𝐹‘𝑧)) = (𝑧 ∈ V ↦ (𝐹‘𝑧)) | |
7 | fvex 6915 | . . . . . . . . 9 ⊢ (𝐹‘𝑥) ∈ V | |
8 | 5, 6, 7 | fvmpt 7010 | . . . . . . . 8 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥)) |
9 | 8 | elv 3479 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) |
10 | fveqres 6949 | . . . . . . 7 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) → (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
12 | 4, 11 | eqtr3i 2758 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
13 | 12 | eqeq2i 2741 | . . . 4 ⊢ (𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
14 | 13 | exbii 1842 | . . 3 ⊢ (∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
15 | 14 | abbii 2798 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} |
16 | fvresex.1 | . . . 4 ⊢ 𝐴 ∈ V | |
17 | 16 | mptex 7241 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ∈ V |
18 | 17 | fvclex 7968 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} ∈ V |
19 | 15, 18 | eqeltrri 2826 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2705 Vcvv 3473 ⊆ wss 3949 ↦ cmpt 5235 ↾ cres 5684 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |