MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvresex Structured version   Visualization version   GIF version

Theorem fvresex 8000
Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fvresex.1 𝐴 ∈ V
Assertion
Ref Expression
fvresex {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fvresex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssv 4033 . . . . . . . 8 𝐴 ⊆ V
2 resmpt 6066 . . . . . . . 8 (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴) = (𝑧𝐴 ↦ (𝐹𝑧)))
31, 2ax-mp 5 . . . . . . 7 ((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴) = (𝑧𝐴 ↦ (𝐹𝑧))
43fveq1i 6921 . . . . . 6 (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)
5 fveq2 6920 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
6 eqid 2740 . . . . . . . . 9 (𝑧 ∈ V ↦ (𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐹𝑧))
7 fvex 6933 . . . . . . . . 9 (𝐹𝑥) ∈ V
85, 6, 7fvmpt 7029 . . . . . . . 8 (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥))
98elv 3493 . . . . . . 7 ((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥)
10 fveqres 6967 . . . . . . 7 (((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥) → (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹𝐴)‘𝑥))
119, 10ax-mp 5 . . . . . 6 (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹𝐴)‘𝑥)
124, 11eqtr3i 2770 . . . . 5 ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) = ((𝐹𝐴)‘𝑥)
1312eqeq2i 2753 . . . 4 (𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) ↔ 𝑦 = ((𝐹𝐴)‘𝑥))
1413exbii 1846 . . 3 (∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥))
1514abbii 2812 . 2 {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)}
16 fvresex.1 . . . 4 𝐴 ∈ V
1716mptex 7260 . . 3 (𝑧𝐴 ↦ (𝐹𝑧)) ∈ V
1817fvclex 7999 . 2 {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)} ∈ V
1915, 18eqeltrri 2841 1 {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1777  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  cmpt 5249  cres 5702  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator