MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvresex Structured version   Visualization version   GIF version

Theorem fvresex 7941
Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fvresex.1 𝐴 ∈ V
Assertion
Ref Expression
fvresex {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fvresex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssv 3974 . . . . . . . 8 𝐴 ⊆ V
2 resmpt 6011 . . . . . . . 8 (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴) = (𝑧𝐴 ↦ (𝐹𝑧)))
31, 2ax-mp 5 . . . . . . 7 ((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴) = (𝑧𝐴 ↦ (𝐹𝑧))
43fveq1i 6862 . . . . . 6 (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)
5 fveq2 6861 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
6 eqid 2730 . . . . . . . . 9 (𝑧 ∈ V ↦ (𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐹𝑧))
7 fvex 6874 . . . . . . . . 9 (𝐹𝑥) ∈ V
85, 6, 7fvmpt 6971 . . . . . . . 8 (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥))
98elv 3455 . . . . . . 7 ((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥)
10 fveqres 6908 . . . . . . 7 (((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥) → (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹𝐴)‘𝑥))
119, 10ax-mp 5 . . . . . 6 (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹𝐴)‘𝑥)
124, 11eqtr3i 2755 . . . . 5 ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) = ((𝐹𝐴)‘𝑥)
1312eqeq2i 2743 . . . 4 (𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) ↔ 𝑦 = ((𝐹𝐴)‘𝑥))
1413exbii 1848 . . 3 (∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥))
1514abbii 2797 . 2 {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)}
16 fvresex.1 . . . 4 𝐴 ∈ V
1716mptex 7200 . . 3 (𝑧𝐴 ↦ (𝐹𝑧)) ∈ V
1817fvclex 7940 . 2 {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)} ∈ V
1915, 18eqeltrri 2826 1 {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  {cab 2708  Vcvv 3450  wss 3917  cmpt 5191  cres 5643  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator