MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvresex Structured version   Visualization version   GIF version

Theorem fvresex 7660
Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fvresex.1 𝐴 ∈ V
Assertion
Ref Expression
fvresex {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)} ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fvresex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssv 3990 . . . . . . . 8 𝐴 ⊆ V
2 resmpt 5904 . . . . . . . 8 (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴) = (𝑧𝐴 ↦ (𝐹𝑧)))
31, 2ax-mp 5 . . . . . . 7 ((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴) = (𝑧𝐴 ↦ (𝐹𝑧))
43fveq1i 6670 . . . . . 6 (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)
5 fveq2 6669 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
6 eqid 2821 . . . . . . . . 9 (𝑧 ∈ V ↦ (𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐹𝑧))
7 fvex 6682 . . . . . . . . 9 (𝐹𝑥) ∈ V
85, 6, 7fvmpt 6767 . . . . . . . 8 (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥))
98elv 3499 . . . . . . 7 ((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥)
10 fveqres 6711 . . . . . . 7 (((𝑧 ∈ V ↦ (𝐹𝑧))‘𝑥) = (𝐹𝑥) → (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹𝐴)‘𝑥))
119, 10ax-mp 5 . . . . . 6 (((𝑧 ∈ V ↦ (𝐹𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹𝐴)‘𝑥)
124, 11eqtr3i 2846 . . . . 5 ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) = ((𝐹𝐴)‘𝑥)
1312eqeq2i 2834 . . . 4 (𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) ↔ 𝑦 = ((𝐹𝐴)‘𝑥))
1413exbii 1844 . . 3 (∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥))
1514abbii 2886 . 2 {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)}
16 fvresex.1 . . . 4 𝐴 ∈ V
1716mptex 6985 . . 3 (𝑧𝐴 ↦ (𝐹𝑧)) ∈ V
1817fvclex 7659 . 2 {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧𝐴 ↦ (𝐹𝑧))‘𝑥)} ∈ V
1915, 18eqeltrri 2910 1 {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹𝐴)‘𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wex 1776  wcel 2110  {cab 2799  Vcvv 3494  wss 3935  cmpt 5145  cres 5556  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator