|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fvresex | Structured version Visualization version GIF version | ||
| Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| fvresex.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| fvresex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssv 4008 | . . . . . . . 8 ⊢ 𝐴 ⊆ V | |
| 2 | resmpt 6055 | . . . . . . . 8 ⊢ (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) | 
| 4 | 3 | fveq1i 6907 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) | 
| 5 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 6 | eqid 2737 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ (𝐹‘𝑧)) = (𝑧 ∈ V ↦ (𝐹‘𝑧)) | |
| 7 | fvex 6919 | . . . . . . . . 9 ⊢ (𝐹‘𝑥) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 7016 | . . . . . . . 8 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥)) | 
| 9 | 8 | elv 3485 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) | 
| 10 | fveqres 6953 | . . . . . . 7 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) → (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) | 
| 12 | 4, 11 | eqtr3i 2767 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) | 
| 13 | 12 | eqeq2i 2750 | . . . 4 ⊢ (𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) | 
| 14 | 13 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) | 
| 15 | 14 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} | 
| 16 | fvresex.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 17 | 16 | mptex 7243 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ∈ V | 
| 18 | 17 | fvclex 7983 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} ∈ V | 
| 19 | 15, 18 | eqeltrri 2838 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 Vcvv 3480 ⊆ wss 3951 ↦ cmpt 5225 ↾ cres 5687 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |