| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvresex | Structured version Visualization version GIF version | ||
| Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvresex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| fvresex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3988 | . . . . . . . 8 ⊢ 𝐴 ⊆ V | |
| 2 | resmpt 6029 | . . . . . . . 8 ⊢ (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) |
| 4 | 3 | fveq1i 6882 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) |
| 5 | fveq2 6881 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 6 | eqid 2736 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ (𝐹‘𝑧)) = (𝑧 ∈ V ↦ (𝐹‘𝑧)) | |
| 7 | fvex 6894 | . . . . . . . . 9 ⊢ (𝐹‘𝑥) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6991 | . . . . . . . 8 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥)) |
| 9 | 8 | elv 3469 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) |
| 10 | fveqres 6928 | . . . . . . 7 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) → (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
| 12 | 4, 11 | eqtr3i 2761 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
| 13 | 12 | eqeq2i 2749 | . . . 4 ⊢ (𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
| 14 | 13 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
| 15 | 14 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} |
| 16 | fvresex.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 17 | 16 | mptex 7220 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ∈ V |
| 18 | 17 | fvclex 7962 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} ∈ V |
| 19 | 15, 18 | eqeltrri 2832 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 Vcvv 3464 ⊆ wss 3931 ↦ cmpt 5206 ↾ cres 5661 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |