| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvresex | Structured version Visualization version GIF version | ||
| Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvresex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| fvresex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3956 | . . . . . . . 8 ⊢ 𝐴 ⊆ V | |
| 2 | resmpt 5993 | . . . . . . . 8 ⊢ (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) |
| 4 | 3 | fveq1i 6832 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) |
| 5 | fveq2 6831 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 6 | eqid 2733 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ (𝐹‘𝑧)) = (𝑧 ∈ V ↦ (𝐹‘𝑧)) | |
| 7 | fvex 6844 | . . . . . . . . 9 ⊢ (𝐹‘𝑥) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6938 | . . . . . . . 8 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥)) |
| 9 | 8 | elv 3443 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) |
| 10 | fveqres 6875 | . . . . . . 7 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) → (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
| 12 | 4, 11 | eqtr3i 2758 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
| 13 | 12 | eqeq2i 2746 | . . . 4 ⊢ (𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
| 14 | 13 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
| 15 | 14 | abbii 2800 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} |
| 16 | fvresex.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 17 | 16 | mptex 7166 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ∈ V |
| 18 | 17 | fvclex 7900 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} ∈ V |
| 19 | 15, 18 | eqeltrri 2830 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 Vcvv 3438 ⊆ wss 3899 ↦ cmpt 5176 ↾ cres 5623 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |