![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvresex | Structured version Visualization version GIF version |
Description: Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvresex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fvresex | ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4001 | . . . . . . . 8 ⊢ 𝐴 ⊆ V | |
2 | resmpt 6030 | . . . . . . . 8 ⊢ (𝐴 ⊆ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴) = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) |
4 | 3 | fveq1i 6885 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) |
5 | fveq2 6884 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
6 | eqid 2726 | . . . . . . . . 9 ⊢ (𝑧 ∈ V ↦ (𝐹‘𝑧)) = (𝑧 ∈ V ↦ (𝐹‘𝑧)) | |
7 | fvex 6897 | . . . . . . . . 9 ⊢ (𝐹‘𝑥) ∈ V | |
8 | 5, 6, 7 | fvmpt 6991 | . . . . . . . 8 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥)) |
9 | 8 | elv 3474 | . . . . . . 7 ⊢ ((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) |
10 | fveqres 6931 | . . . . . . 7 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧))‘𝑥) = (𝐹‘𝑥) → (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((𝑧 ∈ V ↦ (𝐹‘𝑧)) ↾ 𝐴)‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
12 | 4, 11 | eqtr3i 2756 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) = ((𝐹 ↾ 𝐴)‘𝑥) |
13 | 12 | eqeq2i 2739 | . . . 4 ⊢ (𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
14 | 13 | exbii 1842 | . . 3 ⊢ (∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥) ↔ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)) |
15 | 14 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} = {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} |
16 | fvresex.1 | . . . 4 ⊢ 𝐴 ∈ V | |
17 | 16 | mptex 7219 | . . 3 ⊢ (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧)) ∈ V |
18 | 17 | fvclex 7941 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))‘𝑥)} ∈ V |
19 | 15, 18 | eqeltrri 2824 | 1 ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2703 Vcvv 3468 ⊆ wss 3943 ↦ cmpt 5224 ↾ cres 5671 ‘cfv 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |