![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > add1p1 | Structured version Visualization version GIF version |
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.) |
Ref | Expression |
---|---|
add1p1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
2 | 1cnd 11263 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
3 | 1, 2, 2 | addassd 11290 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
4 | 1p1e2 12398 | . . . 4 ⊢ (1 + 1) = 2 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
6 | 5 | oveq2d 7454 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
7 | 3, 6 | eqtrd 2777 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℂcc 11160 1c1 11163 + caddc 11165 2c2 12328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-1cn 11220 ax-addass 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-2 12336 |
This theorem is referenced by: nneo 12709 ccatw2s1len 14669 chfacfscmul0 22889 chfacfscmulfsupp 22890 chfacfscmulgsum 22891 chfacfpmmul0 22893 chfacfpmmulfsupp 22894 chfacfpmmulgsum 22895 upgrwlkdvdelem 29782 poimirlem7 37628 fmtnoprmfac2 47520 fmtnofac1 47523 evenltle 47670 gpg5nbgrvtx03starlem2 47991 |
Copyright terms: Public domain | W3C validator |