MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add1p1 Structured version   Visualization version   GIF version

Theorem add1p1 12375
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))

Proof of Theorem add1p1
StepHypRef Expression
1 id 22 . . 3 (𝑁 ∈ ℂ → 𝑁 ∈ ℂ)
2 1cnd 11110 . . 3 (𝑁 ∈ ℂ → 1 ∈ ℂ)
31, 2, 2addassd 11137 . 2 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
4 1p1e2 12248 . . . 4 (1 + 1) = 2
54a1i 11 . . 3 (𝑁 ∈ ℂ → (1 + 1) = 2)
65oveq2d 7365 . 2 (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2))
73, 6eqtrd 2764 1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11067  ax-addass 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-2 12191
This theorem is referenced by:  nneo  12560  ccatw2s1len  14532  chfacfscmul0  22743  chfacfscmulfsupp  22744  chfacfscmulgsum  22745  chfacfpmmul0  22747  chfacfpmmulfsupp  22748  chfacfpmmulgsum  22749  upgrwlkdvdelem  29681  poimirlem7  37611  fmtnoprmfac2  47555  fmtnofac1  47558  evenltle  47705  gpg5nbgrvtx03starlem2  48057
  Copyright terms: Public domain W3C validator