| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > add1p1 | Structured version Visualization version GIF version | ||
| Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.) |
| Ref | Expression |
|---|---|
| add1p1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 11145 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2, 2 | addassd 11172 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
| 4 | 1p1e2 12282 | . . . 4 ⊢ (1 + 1) = 2 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
| 6 | 5 | oveq2d 7385 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
| 7 | 3, 6 | eqtrd 2764 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 2c2 12217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 |
| This theorem is referenced by: nneo 12594 ccatw2s1len 14566 chfacfscmul0 22778 chfacfscmulfsupp 22779 chfacfscmulgsum 22780 chfacfpmmul0 22782 chfacfpmmulfsupp 22783 chfacfpmmulgsum 22784 upgrwlkdvdelem 29716 poimirlem7 37614 fmtnoprmfac2 47561 fmtnofac1 47564 evenltle 47711 gpg5nbgrvtx03starlem2 48053 |
| Copyright terms: Public domain | W3C validator |