MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add1p1 Structured version   Visualization version   GIF version

Theorem add1p1 11876
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))

Proof of Theorem add1p1
StepHypRef Expression
1 id 22 . . 3 (𝑁 ∈ ℂ → 𝑁 ∈ ℂ)
2 1cnd 10625 . . 3 (𝑁 ∈ ℂ → 1 ∈ ℂ)
31, 2, 2addassd 10652 . 2 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
4 1p1e2 11750 . . . 4 (1 + 1) = 2
54a1i 11 . . 3 (𝑁 ∈ ℂ → (1 + 1) = 2)
65oveq2d 7156 . 2 (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2))
73, 6eqtrd 2857 1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  (class class class)co 7140  cc 10524  1c1 10527   + caddc 10529  2c2 11680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2794  ax-1cn 10584  ax-addass 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-v 3471  df-un 3913  df-in 3915  df-ss 3925  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-iota 6293  df-fv 6342  df-ov 7143  df-2 11688
This theorem is referenced by:  nneo  12054  ccatw2s1len  13971  chfacfscmul0  21461  chfacfscmulfsupp  21462  chfacfscmulgsum  21463  chfacfpmmul0  21465  chfacfpmmulfsupp  21466  chfacfpmmulgsum  21467  upgrwlkdvdelem  27523  poimirlem7  35022  fmtnoprmfac2  44023  fmtnofac1  44026  evenltle  44174
  Copyright terms: Public domain W3C validator