| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > add1p1 | Structured version Visualization version GIF version | ||
| Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.) |
| Ref | Expression |
|---|---|
| add1p1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 11237 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2, 2 | addassd 11264 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
| 4 | 1p1e2 12372 | . . . 4 ⊢ (1 + 1) = 2 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
| 6 | 5 | oveq2d 7428 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
| 7 | 3, 6 | eqtrd 2769 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7412 ℂcc 11134 1c1 11137 + caddc 11139 2c2 12302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-1cn 11194 ax-addass 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6493 df-fv 6548 df-ov 7415 df-2 12310 |
| This theorem is referenced by: nneo 12684 ccatw2s1len 14644 chfacfscmul0 22811 chfacfscmulfsupp 22812 chfacfscmulgsum 22813 chfacfpmmul0 22815 chfacfpmmulfsupp 22816 chfacfpmmulgsum 22817 upgrwlkdvdelem 29683 poimirlem7 37568 fmtnoprmfac2 47488 fmtnofac1 47491 evenltle 47638 gpg5nbgrvtx03starlem2 47959 |
| Copyright terms: Public domain | W3C validator |