MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add1p1 Structured version   Visualization version   GIF version

Theorem add1p1 12207
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))

Proof of Theorem add1p1
StepHypRef Expression
1 id 22 . . 3 (𝑁 ∈ ℂ → 𝑁 ∈ ℂ)
2 1cnd 10954 . . 3 (𝑁 ∈ ℂ → 1 ∈ ℂ)
31, 2, 2addassd 10981 . 2 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
4 1p1e2 12081 . . . 4 (1 + 1) = 2
54a1i 11 . . 3 (𝑁 ∈ ℂ → (1 + 1) = 2)
65oveq2d 7284 . 2 (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2))
73, 6eqtrd 2779 1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  (class class class)co 7268  cc 10853  1c1 10856   + caddc 10858  2c2 12011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-1cn 10913  ax-addass 10920
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271  df-2 12019
This theorem is referenced by:  nneo  12387  ccatw2s1len  14312  chfacfscmul0  21988  chfacfscmulfsupp  21989  chfacfscmulgsum  21990  chfacfpmmul0  21992  chfacfpmmulfsupp  21993  chfacfpmmulgsum  21994  upgrwlkdvdelem  28083  poimirlem7  35763  fmtnoprmfac2  44971  fmtnofac1  44974  evenltle  45121
  Copyright terms: Public domain W3C validator