MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add1p1 Structured version   Visualization version   GIF version

Theorem add1p1 12270
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))

Proof of Theorem add1p1
StepHypRef Expression
1 id 22 . . 3 (𝑁 ∈ ℂ → 𝑁 ∈ ℂ)
2 1cnd 11016 . . 3 (𝑁 ∈ ℂ → 1 ∈ ℂ)
31, 2, 2addassd 11043 . 2 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
4 1p1e2 12144 . . . 4 (1 + 1) = 2
54a1i 11 . . 3 (𝑁 ∈ ℂ → (1 + 1) = 2)
65oveq2d 7323 . 2 (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2))
73, 6eqtrd 2776 1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  (class class class)co 7307  cc 10915  1c1 10918   + caddc 10920  2c2 12074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-1cn 10975  ax-addass 10982
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-ov 7310  df-2 12082
This theorem is referenced by:  nneo  12450  ccatw2s1len  14376  chfacfscmul0  22052  chfacfscmulfsupp  22053  chfacfscmulgsum  22054  chfacfpmmul0  22056  chfacfpmmulfsupp  22057  chfacfpmmulgsum  22058  upgrwlkdvdelem  28149  poimirlem7  35828  fmtnoprmfac2  45077  fmtnofac1  45080  evenltle  45227
  Copyright terms: Public domain W3C validator