MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt2addmuld Structured version   Visualization version   GIF version

Theorem lt2addmuld 12516
Description: If two real numbers are less than a third real number, the sum of the two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt2addmuld.a (𝜑𝐴 ∈ ℝ)
lt2addmuld.b (𝜑𝐵 ∈ ℝ)
lt2addmuld.c (𝜑𝐶 ∈ ℝ)
lt2addmuld.altc (𝜑𝐴 < 𝐶)
lt2addmuld.bltc (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
lt2addmuld (𝜑 → (𝐴 + 𝐵) < (2 · 𝐶))

Proof of Theorem lt2addmuld
StepHypRef Expression
1 lt2addmuld.a . . 3 (𝜑𝐴 ∈ ℝ)
2 lt2addmuld.b . . 3 (𝜑𝐵 ∈ ℝ)
3 lt2addmuld.c . . 3 (𝜑𝐶 ∈ ℝ)
4 lt2addmuld.altc . . 3 (𝜑𝐴 < 𝐶)
5 lt2addmuld.bltc . . 3 (𝜑𝐵 < 𝐶)
61, 2, 3, 3, 4, 5lt2addd 11886 . 2 (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐶))
73recnd 11289 . . 3 (𝜑𝐶 ∈ ℂ)
872timesd 12509 . 2 (𝜑 → (2 · 𝐶) = (𝐶 + 𝐶))
96, 8breqtrrd 5171 1 (𝜑 → (𝐴 + 𝐵) < (2 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154   + caddc 11158   · cmul 11160   < clt 11295  2c2 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-2 12329
This theorem is referenced by:  crctcshwlkn0lem5  29834  rmspecsqrtnq  42917  lt3addmuld  45313
  Copyright terms: Public domain W3C validator