MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmul0 Structured version   Visualization version   GIF version

Theorem chfacfscmul0 20956
Description: A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfscmulcl.x 𝑋 = (var1𝑅)
chfacfscmulcl.m · = ( ·𝑠𝑌)
chfacfscmulcl.e = (.g‘(mulGrp‘𝑃))
Assertion
Ref Expression
chfacfscmul0 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠,𝐵   𝑛,𝐾   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   · (𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chfacfscmul0
StepHypRef Expression
1 eluz2 11897 . . . . . 6 (𝐾 ∈ (ℤ‘(𝑠 + 2)) ↔ ((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾))
2 simpll 783 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℤ)
3 nngt0 11310 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → 0 < 𝑠)
4 nnre 11286 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
54adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℝ)
6 2rp 12038 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
76a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ+)
85, 7ltaddrpd 12108 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 < (𝑠 + 2))
9 0red 10301 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 ∈ ℝ)
10 2re 11350 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ)
125, 11readdcld 10327 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) ∈ ℝ)
13 lttr 10372 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
149, 5, 12, 13syl3anc 1490 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
158, 14mpan2d 685 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (0 < 𝑠 → 0 < (𝑠 + 2)))
1615ex 401 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℤ → (𝑠 ∈ ℕ → (0 < 𝑠 → 0 < (𝑠 + 2))))
1716com13 88 . . . . . . . . . . . . . . . 16 (0 < 𝑠 → (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2))))
183, 17mpcom 38 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2)))
1918impcom 396 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 < (𝑠 + 2))
20 zre 11632 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2120adantr 472 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝐾 ∈ ℝ)
22 ltleletr 10388 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
239, 12, 21, 22syl3anc 1490 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
2419, 23mpand 686 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → 0 ≤ 𝐾))
2524imp 395 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾)
26 elnn0z 11641 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
272, 25, 26sylanbrc 578 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℕ0)
28 nncn 11287 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
29 add1p1 11533 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3028, 29syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3130adantl 473 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) + 1) = (𝑠 + 2))
3231eqcomd 2771 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) = ((𝑠 + 1) + 1))
3332breq1d 4821 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
34 nnz 11651 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
3534peano2zd 11737 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
3635anim2i 610 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝐾 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ))
3736ancomd 453 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
38 zltp1le 11679 . . . . . . . . . . . . . . 15 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑠 + 1) < 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
3938bicomd 214 . . . . . . . . . . . . . 14 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4037, 39syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4133, 40bitrd 270 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4241biimpa 468 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 + 1) < 𝐾)
4327, 42jca 507 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾))
4443ex 401 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4544impancom 443 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
46453adant1 1160 . . . . . . 7 (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4746com12 32 . . . . . 6 (𝑠 ∈ ℕ → (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
481, 47syl5bi 233 . . . . 5 (𝑠 ∈ ℕ → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4948adantr 472 . . . 4 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
5049adantl 473 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
51 chfacfisf.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
5251a1i 11 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))))
53 0red 10301 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ ℝ)
54 peano2re 10467 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → (𝑠 + 1) ∈ ℝ)
554, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5655adantr 472 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑠 + 1) ∈ ℝ)
5756adantl 473 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑠 + 1) ∈ ℝ)
5857ad2antrr 717 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) ∈ ℝ)
59 nn0re 11552 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
6059ad2antlr 718 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℝ)
61 nnnn0 11550 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
6261adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝑠 ∈ ℕ0)
6362ad2antlr 718 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℕ0)
64 nn0p1gt0 11573 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → 0 < (𝑠 + 1))
6563, 64syl 17 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 0 < (𝑠 + 1))
6665adantr 472 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < (𝑠 + 1))
67 simpr 477 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) < 𝐾)
6853, 58, 60, 66, 67lttrd 10456 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < 𝐾)
6968gt0ne0d 10850 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ 0)
7069neneqd 2942 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = 0)
7170adantr 472 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = 0)
72 eqeq1 2769 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = 0 ↔ 𝐾 = 0))
7372notbid 309 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7473adantl 473 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7571, 74mpbird 248 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = 0)
7675iffalsed 4256 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))
7756ad2antlr 718 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
78 ltne 10392 . . . . . . . . . . . . 13 (((𝑠 + 1) ∈ ℝ ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
7977, 78sylan 575 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
8079neneqd 2942 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = (𝑠 + 1))
8180adantr 472 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = (𝑠 + 1))
82 eqeq1 2769 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = (𝑠 + 1) ↔ 𝐾 = (𝑠 + 1)))
8382notbid 309 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8483adantl 473 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8581, 84mpbird 248 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = (𝑠 + 1))
8685iffalsed 4256 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))
87 simplr 785 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝐾)
88 breq2 4815 . . . . . . . . . . 11 (𝑛 = 𝐾 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
8988adantl 473 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
9087, 89mpbird 248 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝑛)
9190iftrued 4253 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = 0 )
9276, 86, 913eqtrd 2803 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = 0 )
93 simplr 785 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℕ0)
94 chfacfisf.0 . . . . . . . . 9 0 = (0g𝑌)
9594fvexi 6393 . . . . . . . 8 0 ∈ V
9695a1i 11 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ V)
9752, 92, 93, 96fvmptd 6481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝐺𝐾) = 0 )
9897oveq2d 6862 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · (𝐺𝐾)) = ((𝐾 𝑋) · 0 ))
99 crngring 18839 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
100 chfacfisf.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
101 chfacfisf.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
102100, 101pmatlmod 20792 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
10399, 102sylan2 586 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
1041033adant3 1162 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
105104ad2antrr 717 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑌 ∈ LMod)
106100ply1ring 19905 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
10799, 106syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
1081073ad2ant2 1164 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
109 eqid 2765 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
110109ringmgp 18834 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
111108, 110syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
112111ad2antrr 717 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
113 simpr 477 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
114993ad2ant2 1164 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
115 chfacfscmulcl.x . . . . . . . . . . . . 13 𝑋 = (var1𝑅)
116 eqid 2765 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
117115, 100, 116vr1cl 19874 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
118114, 117syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
119118ad2antrr 717 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃))
120109, 116mgpbas 18776 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
121 chfacfscmulcl.e . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑃))
122120, 121mulgnn0cl 17838 . . . . . . . . . 10 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝐾 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝐾 𝑋) ∈ (Base‘𝑃))
123112, 113, 119, 122syl3anc 1490 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝐾 𝑋) ∈ (Base‘𝑃))
124100ply1crng 19855 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
125124anim2i 610 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
1261253adant3 1162 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
127101matsca2 20516 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
128126, 127syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
129128eqcomd 2771 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
130129fveq2d 6383 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
131130eleq2d 2830 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝐾 𝑋) ∈ (Base‘𝑃)))
132131ad2antrr 717 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝐾 𝑋) ∈ (Base‘𝑃)))
133123, 132mpbird 248 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌)))
134105, 133jca 507 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑌 ∈ LMod ∧ (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌))))
135134adantr 472 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑌 ∈ LMod ∧ (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌))))
136 eqid 2765 . . . . . . 7 (Scalar‘𝑌) = (Scalar‘𝑌)
137 chfacfscmulcl.m . . . . . . 7 · = ( ·𝑠𝑌)
138 eqid 2765 . . . . . . 7 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
139136, 137, 138, 94lmodvs0 19180 . . . . . 6 ((𝑌 ∈ LMod ∧ (𝐾 𝑋) ∈ (Base‘(Scalar‘𝑌))) → ((𝐾 𝑋) · 0 ) = 0 )
140135, 139syl 17 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · 0 ) = 0 )
14198, 140eqtrd 2799 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 )
142141expl 449 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 ))
14350, 142syld 47 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 ))
1441433impia 1145 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 𝑋) · (𝐺𝐾)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  Vcvv 3350  ifcif 4245   class class class wbr 4811  cmpt 4890  cfv 6070  (class class class)co 6846  𝑚 cmap 8064  Fincfn 8164  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   < clt 10332  cle 10333  cmin 10524  cn 11278  2c2 11331  0cn0 11542  cz 11628  cuz 11891  +crp 12033  ...cfz 12538  Basecbs 16144  .rcmulr 16229  Scalarcsca 16231   ·𝑠 cvsca 16232  0gc0g 16380  Mndcmnd 17574  -gcsg 17705  .gcmg 17821  mulGrpcmgp 18770  Ringcrg 18828  CRingccrg 18829  LModclmod 19146  var1cv1 19833  Poly1cpl1 19834   Mat cmat 20503   matToPolyMat cmat2pmat 20802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-ot 4345  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-ofr 7100  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-sup 8559  df-oi 8626  df-card 9020  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-rp 12034  df-fz 12539  df-fzo 12679  df-seq 13014  df-hash 13327  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-hom 16252  df-cco 16253  df-0g 16382  df-gsum 16383  df-prds 16388  df-pws 16390  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-mhm 17615  df-submnd 17616  df-grp 17706  df-minusg 17707  df-sbg 17708  df-mulg 17822  df-subg 17869  df-ghm 17936  df-cntz 18027  df-cmn 18475  df-abl 18476  df-mgp 18771  df-ur 18783  df-ring 18830  df-cring 18831  df-subrg 19061  df-lmod 19148  df-lss 19216  df-sra 19460  df-rgmod 19461  df-psr 19644  df-mvr 19645  df-mpl 19646  df-opsr 19648  df-psr1 19837  df-vr1 19838  df-ply1 19839  df-dsmm 20366  df-frlm 20381  df-mat 20504
This theorem is referenced by:  chfacfscmulfsupp  20957  chfacfscmulgsum  20958
  Copyright terms: Public domain W3C validator