![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenltle | Structured version Visualization version GIF version |
Description: If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) |
Ref | Expression |
---|---|
evenltle | ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenz 42325 | . . . 4 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℤ) | |
2 | evenz 42325 | . . . 4 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℤ) | |
3 | zltp1le 11717 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
4 | 1, 2, 3 | syl2anr 591 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
5 | 1 | zred 11772 | . . . . . 6 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℝ) |
6 | peano2re 10499 | . . . . . 6 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℝ) |
8 | 2 | zred 11772 | . . . . 5 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℝ) |
9 | leloe 10414 | . . . . 5 ⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) | |
10 | 7, 8, 9 | syl2anr 591 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) |
11 | 1 | peano2zd 11775 | . . . . . . 7 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℤ) |
12 | zltp1le 11717 | . . . . . . 7 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) | |
13 | 11, 2, 12 | syl2anr 591 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) |
14 | 1 | zcnd 11773 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℂ) |
15 | 14 | adantl 474 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → 𝑀 ∈ ℂ) |
16 | add1p1 11571 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + 2)) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) + 1) = (𝑀 + 2)) |
18 | 17 | breq1d 4853 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 ↔ (𝑀 + 2) ≤ 𝑁)) |
19 | 18 | biimpd 221 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
20 | 13, 19 | sylbid 232 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
21 | evenp1odd 42335 | . . . . . 6 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ Odd ) | |
22 | zneoALTV 42362 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → 𝑁 ≠ (𝑀 + 1)) | |
23 | eqneqall 2982 | . . . . . . . 8 ⊢ (𝑁 = (𝑀 + 1) → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) | |
24 | 23 | eqcoms 2807 | . . . . . . 7 ⊢ ((𝑀 + 1) = 𝑁 → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) |
25 | 22, 24 | syl5com 31 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
26 | 21, 25 | sylan2 587 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
27 | 20, 26 | jaod 886 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁) → (𝑀 + 2) ≤ 𝑁)) |
28 | 10, 27 | sylbid 232 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
29 | 4, 28 | sylbid 232 | . 2 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
30 | 29 | 3impia 1146 | 1 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 (class class class)co 6878 ℂcc 10222 ℝcr 10223 1c1 10225 + caddc 10227 < clt 10363 ≤ cle 10364 2c2 11368 ℤcz 11666 Even ceven 42319 Odd codd 42320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-n0 11581 df-z 11667 df-even 42321 df-odd 42322 |
This theorem is referenced by: mogoldbb 42455 |
Copyright terms: Public domain | W3C validator |