Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenltle | Structured version Visualization version GIF version |
Description: If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) |
Ref | Expression |
---|---|
evenltle | ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenz 44515 | . . . 4 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℤ) | |
2 | evenz 44515 | . . . 4 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℤ) | |
3 | zltp1le 12071 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
4 | 1, 2, 3 | syl2anr 599 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
5 | 1 | zred 12126 | . . . . . 6 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℝ) |
6 | peano2re 10851 | . . . . . 6 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℝ) |
8 | 2 | zred 12126 | . . . . 5 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℝ) |
9 | leloe 10765 | . . . . 5 ⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) | |
10 | 7, 8, 9 | syl2anr 599 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) |
11 | 1 | peano2zd 12129 | . . . . . . 7 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℤ) |
12 | zltp1le 12071 | . . . . . . 7 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) | |
13 | 11, 2, 12 | syl2anr 599 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) |
14 | 1 | zcnd 12127 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℂ) |
15 | 14 | adantl 485 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → 𝑀 ∈ ℂ) |
16 | add1p1 11925 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + 2)) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) + 1) = (𝑀 + 2)) |
18 | 17 | breq1d 5042 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 ↔ (𝑀 + 2) ≤ 𝑁)) |
19 | 18 | biimpd 232 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
20 | 13, 19 | sylbid 243 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
21 | evenp1odd 44525 | . . . . . 6 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ Odd ) | |
22 | zneoALTV 44554 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → 𝑁 ≠ (𝑀 + 1)) | |
23 | eqneqall 2962 | . . . . . . . 8 ⊢ (𝑁 = (𝑀 + 1) → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) | |
24 | 23 | eqcoms 2766 | . . . . . . 7 ⊢ ((𝑀 + 1) = 𝑁 → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) |
25 | 22, 24 | syl5com 31 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
26 | 21, 25 | sylan2 595 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
27 | 20, 26 | jaod 856 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁) → (𝑀 + 2) ≤ 𝑁)) |
28 | 10, 27 | sylbid 243 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
29 | 4, 28 | sylbid 243 | . 2 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
30 | 29 | 3impia 1114 | 1 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5032 (class class class)co 7150 ℂcc 10573 ℝcr 10574 1c1 10576 + caddc 10578 < clt 10713 ≤ cle 10714 2c2 11729 ℤcz 12020 Even ceven 44509 Odd codd 44510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-even 44511 df-odd 44512 |
This theorem is referenced by: mogoldbb 44670 |
Copyright terms: Public domain | W3C validator |