![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenltle | Structured version Visualization version GIF version |
Description: If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) |
Ref | Expression |
---|---|
evenltle | ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenz 45912 | . . . 4 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℤ) | |
2 | evenz 45912 | . . . 4 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℤ) | |
3 | zltp1le 12561 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
4 | 1, 2, 3 | syl2anr 598 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
5 | 1 | zred 12615 | . . . . . 6 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℝ) |
6 | peano2re 11336 | . . . . . 6 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℝ) |
8 | 2 | zred 12615 | . . . . 5 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℝ) |
9 | leloe 11249 | . . . . 5 ⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) | |
10 | 7, 8, 9 | syl2anr 598 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) |
11 | 1 | peano2zd 12618 | . . . . . . 7 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℤ) |
12 | zltp1le 12561 | . . . . . . 7 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) | |
13 | 11, 2, 12 | syl2anr 598 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) |
14 | 1 | zcnd 12616 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℂ) |
15 | 14 | adantl 483 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → 𝑀 ∈ ℂ) |
16 | add1p1 12412 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + 2)) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) + 1) = (𝑀 + 2)) |
18 | 17 | breq1d 5119 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 ↔ (𝑀 + 2) ≤ 𝑁)) |
19 | 18 | biimpd 228 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
20 | 13, 19 | sylbid 239 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
21 | evenp1odd 45922 | . . . . . 6 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ Odd ) | |
22 | zneoALTV 45951 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → 𝑁 ≠ (𝑀 + 1)) | |
23 | eqneqall 2951 | . . . . . . . 8 ⊢ (𝑁 = (𝑀 + 1) → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) | |
24 | 23 | eqcoms 2741 | . . . . . . 7 ⊢ ((𝑀 + 1) = 𝑁 → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) |
25 | 22, 24 | syl5com 31 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
26 | 21, 25 | sylan2 594 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
27 | 20, 26 | jaod 858 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁) → (𝑀 + 2) ≤ 𝑁)) |
28 | 10, 27 | sylbid 239 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
29 | 4, 28 | sylbid 239 | . 2 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
30 | 29 | 3impia 1118 | 1 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 class class class wbr 5109 (class class class)co 7361 ℂcc 11057 ℝcr 11058 1c1 11060 + caddc 11062 < clt 11197 ≤ cle 11198 2c2 12216 ℤcz 12507 Even ceven 45906 Odd codd 45907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-n0 12422 df-z 12508 df-even 45908 df-odd 45909 |
This theorem is referenced by: mogoldbb 46067 |
Copyright terms: Public domain | W3C validator |