![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evenltle | Structured version Visualization version GIF version |
Description: If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) |
Ref | Expression |
---|---|
evenltle | ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenz 46852 | . . . 4 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℤ) | |
2 | evenz 46852 | . . . 4 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℤ) | |
3 | zltp1le 12613 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
4 | 1, 2, 3 | syl2anr 596 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
5 | 1 | zred 12667 | . . . . . 6 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℝ) |
6 | peano2re 11388 | . . . . . 6 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℝ) |
8 | 2 | zred 12667 | . . . . 5 ⊢ (𝑁 ∈ Even → 𝑁 ∈ ℝ) |
9 | leloe 11301 | . . . . 5 ⊢ (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) | |
10 | 7, 8, 9 | syl2anr 596 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁))) |
11 | 1 | peano2zd 12670 | . . . . . . 7 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ ℤ) |
12 | zltp1le 12613 | . . . . . . 7 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) | |
13 | 11, 2, 12 | syl2anr 596 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁)) |
14 | 1 | zcnd 12668 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Even → 𝑀 ∈ ℂ) |
15 | 14 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → 𝑀 ∈ ℂ) |
16 | add1p1 12464 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + 2)) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) + 1) = (𝑀 + 2)) |
18 | 17 | breq1d 5151 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 ↔ (𝑀 + 2) ≤ 𝑁)) |
19 | 18 | biimpd 228 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
20 | 13, 19 | sylbid 239 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
21 | evenp1odd 46862 | . . . . . 6 ⊢ (𝑀 ∈ Even → (𝑀 + 1) ∈ Odd ) | |
22 | zneoALTV 46891 | . . . . . . 7 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → 𝑁 ≠ (𝑀 + 1)) | |
23 | eqneqall 2945 | . . . . . . . 8 ⊢ (𝑁 = (𝑀 + 1) → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) | |
24 | 23 | eqcoms 2734 | . . . . . . 7 ⊢ ((𝑀 + 1) = 𝑁 → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁)) |
25 | 22, 24 | syl5com 31 | . . . . . 6 ⊢ ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
26 | 21, 25 | sylan2 592 | . . . . 5 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
27 | 20, 26 | jaod 856 | . . . 4 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁) → (𝑀 + 2) ≤ 𝑁)) |
28 | 10, 27 | sylbid 239 | . . 3 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
29 | 4, 28 | sylbid 239 | . 2 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 → (𝑀 + 2) ≤ 𝑁)) |
30 | 29 | 3impia 1114 | 1 ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 class class class wbr 5141 (class class class)co 7404 ℂcc 11107 ℝcr 11108 1c1 11110 + caddc 11112 < clt 11249 ≤ cle 11250 2c2 12268 ℤcz 12559 Even ceven 46846 Odd codd 46847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-even 46848 df-odd 46849 |
This theorem is referenced by: mogoldbb 47007 |
Copyright terms: Public domain | W3C validator |