MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmulgsum Structured version   Visualization version   GIF version

Theorem chfacfscmulgsum 22009
Description: Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfscmulcl.x 𝑋 = (var1𝑅)
chfacfscmulcl.m · = ( ·𝑠𝑌)
chfacfscmulcl.e = (.g‘(mulGrp‘𝑃))
chfacfscmulgsum.p + = (+g𝑌)
Assertion
Ref Expression
chfacfscmulgsum (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠,𝐵   0 ,𝑛   𝐵,𝑖,𝑠   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   ,𝑖   · ,𝑏,𝑖   𝑇,𝑛   ,𝑛   × ,𝑛   𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   + (𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   · (𝑛,𝑠)   × (𝑖,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem chfacfscmulgsum
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑌) = (Base‘𝑌)
2 chfacfisf.0 . . 3 0 = (0g𝑌)
3 chfacfscmulgsum.p . . 3 + = (+g𝑌)
4 crngring 19795 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
54anim2i 617 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
653adant3 1131 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7 chfacfisf.p . . . . . . 7 𝑃 = (Poly1𝑅)
8 chfacfisf.y . . . . . . 7 𝑌 = (𝑁 Mat 𝑃)
97, 8pmatring 21841 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
106, 9syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
11 ringcmn 19820 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ CMnd)
1210, 11syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ CMnd)
1312adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ CMnd)
14 nn0ex 12239 . . . 4 0 ∈ V
1514a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 ∈ V)
16 simpll 764 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
17 simplr 766 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
18 simpr 485 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
1916, 17, 183jca 1127 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0))
20 chfacfisf.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21 chfacfisf.b . . . . 5 𝐵 = (Base‘𝐴)
22 chfacfisf.r . . . . 5 × = (.r𝑌)
23 chfacfisf.s . . . . 5 = (-g𝑌)
24 chfacfisf.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 chfacfisf.g . . . . 5 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
26 chfacfscmulcl.x . . . . 5 𝑋 = (var1𝑅)
27 chfacfscmulcl.m . . . . 5 · = ( ·𝑠𝑌)
28 chfacfscmulcl.e . . . . 5 = (.g‘(mulGrp‘𝑃))
2920, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 22006 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
3019, 29syl 17 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
3120, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulfsupp 22008 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))) finSupp 0 )
32 nn0disj 13372 . . . 4 ((0...(𝑠 + 1)) ∩ (ℤ‘((𝑠 + 1) + 1))) = ∅
3332a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0...(𝑠 + 1)) ∩ (ℤ‘((𝑠 + 1) + 1))) = ∅)
34 nnnn0 12240 . . . . . 6 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
35 peano2nn0 12273 . . . . . 6 (𝑠 ∈ ℕ0 → (𝑠 + 1) ∈ ℕ0)
3634, 35syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ0)
37 nn0split 13371 . . . . 5 ((𝑠 + 1) ∈ ℕ0 → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
3836, 37syl 17 . . . 4 (𝑠 ∈ ℕ → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
3938ad2antrl 725 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
401, 2, 3, 13, 15, 30, 31, 33, 39gsumsplit2 19530 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
41 simpll 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
42 simplr 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
43 nncn 11981 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
44 add1p1 12224 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4543, 44syl 17 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4645ad2antrl 725 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) + 1) = (𝑠 + 2))
4746fveq2d 6778 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (ℤ‘((𝑠 + 1) + 1)) = (ℤ‘(𝑠 + 2)))
4847eleq2d 2824 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↔ 𝑖 ∈ (ℤ‘(𝑠 + 2))))
4948biimpa 477 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → 𝑖 ∈ (ℤ‘(𝑠 + 2)))
5020, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmul0 22007 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (ℤ‘(𝑠 + 2))) → ((𝑖 𝑋) · (𝐺𝑖)) = 0 )
5141, 42, 49, 50syl3anc 1370 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → ((𝑖 𝑋) · (𝐺𝑖)) = 0 )
5251mpteq2dva 5174 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))) = (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 ))
5352oveq2d 7291 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )))
544, 9sylan2 593 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
55 ringmnd 19793 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
5654, 55syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Mnd)
57563adant3 1131 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Mnd)
58 fvex 6787 . . . . . . . 8 (ℤ‘((𝑠 + 1) + 1)) ∈ V
5957, 58jctir 521 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V))
6059adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V))
612gsumz 18474 . . . . . 6 ((𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6260, 61syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6353, 62eqtrd 2778 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = 0 )
6463oveq2d 7291 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ))
65 fzfid 13693 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0...(𝑠 + 1)) ∈ Fin)
66 elfznn0 13349 . . . . . . . 8 (𝑖 ∈ (0...(𝑠 + 1)) → 𝑖 ∈ ℕ0)
6766, 19sylan2 593 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0))
6867, 29syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
6968ralrimiva 3103 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 + 1))((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
701, 13, 65, 69gsummptcl 19568 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌))
711, 3, 2mndrid 18406 . . . 4 ((𝑌 ∈ Mnd ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7257, 70, 71syl2an2r 682 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7364, 72eqtrd 2778 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7434ad2antrl 725 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
751, 3, 13, 74, 68gsummptfzsplit 19533 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
76 elfznn0 13349 . . . . . . 7 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
7776, 30sylan2 593 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
781, 3, 13, 74, 77gsummptfzsplitl 19534 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
7957adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Mnd)
80 0nn0 12248 . . . . . . . 8 0 ∈ ℕ0
8180a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ ℕ0)
8220, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 22006 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 0 ∈ ℕ0) → ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌))
8381, 82mpd3an3 1461 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌))
84 oveq1 7282 . . . . . . . . 9 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
85 fveq2 6774 . . . . . . . . 9 (𝑖 = 0 → (𝐺𝑖) = (𝐺‘0))
8684, 85oveq12d 7293 . . . . . . . 8 (𝑖 = 0 → ((𝑖 𝑋) · (𝐺𝑖)) = ((0 𝑋) · (𝐺‘0)))
871, 86gsumsn 19555 . . . . . . 7 ((𝑌 ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌)) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((0 𝑋) · (𝐺‘0)))
8879, 81, 83, 87syl3anc 1370 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((0 𝑋) · (𝐺‘0)))
8988oveq2d 7291 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))))
9078, 89eqtrd 2778 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))))
91 ovexd 7310 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ V)
92 1nn0 12249 . . . . . . . 8 1 ∈ ℕ0
9392a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℕ0)
9474, 93nn0addcld 12297 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
9520, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 22006 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ (𝑠 + 1) ∈ ℕ0) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))
9694, 95mpd3an3 1461 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))
97 oveq1 7282 . . . . . . 7 (𝑖 = (𝑠 + 1) → (𝑖 𝑋) = ((𝑠 + 1) 𝑋))
98 fveq2 6774 . . . . . . 7 (𝑖 = (𝑠 + 1) → (𝐺𝑖) = (𝐺‘(𝑠 + 1)))
9997, 98oveq12d 7293 . . . . . 6 (𝑖 = (𝑠 + 1) → ((𝑖 𝑋) · (𝐺𝑖)) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
1001, 99gsumsn 19555 . . . . 5 ((𝑌 ∈ Mnd ∧ (𝑠 + 1) ∈ V ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌)) → (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
10179, 91, 96, 100syl3anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
10290, 101oveq12d 7293 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))))
103 fzfid 13693 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1...𝑠) ∈ Fin)
104 simpll 764 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
105 simplr 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
106 elfznn 13285 . . . . . . . . . 10 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ)
107106nnnn0d 12293 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0)
108107adantl 482 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0)
109104, 105, 108, 29syl3anc 1370 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
110109ralrimiva 3103 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
1111, 13, 103, 110gsummptcl 19568 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌))
1121, 3mndass 18394 . . . . 5 ((𝑌 ∈ Mnd ∧ ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌) ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))))
11379, 111, 83, 96, 112syl13anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))))
114106nnne0d 12023 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ≠ 0)
115114ad2antlr 724 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 ≠ 0)
116 neeq1 3006 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑛 ≠ 0 ↔ 𝑖 ≠ 0))
117116adantl 482 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 ≠ 0 ↔ 𝑖 ≠ 0))
118115, 117mpbird 256 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ≠ 0)
119 eqneqall 2954 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑛 ≠ 0 → 0 = (𝑇‘(𝑏‘(𝑖 − 1)))))
120118, 119mpan9 507 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 0 = (𝑇‘(𝑏‘(𝑖 − 1))))
121 simplr 766 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 𝑛 = 𝑖)
122 eqeq1 2742 . . . . . . . . . . . . . . . . 17 (0 = 𝑛 → (0 = 𝑖𝑛 = 𝑖))
123122eqcoms 2746 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → (0 = 𝑖𝑛 = 𝑖))
124123adantl 482 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (0 = 𝑖𝑛 = 𝑖))
125121, 124mpbird 256 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 0 = 𝑖)
126125fveq2d 6778 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (𝑏‘0) = (𝑏𝑖))
127126fveq2d 6778 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (𝑇‘(𝑏‘0)) = (𝑇‘(𝑏𝑖)))
128127oveq2d 7291 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))
129120, 128oveq12d 7293 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
130 elfz2 13246 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) ↔ ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)))
131 zleltp1 12371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
132131ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
1331323adant1 1129 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
134133biimpcd 248 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑠 → ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 < (𝑠 + 1)))
135134adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≤ 𝑖𝑖𝑠) → ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 < (𝑠 + 1)))
136135impcom 408 . . . . . . . . . . . . . . . . . . . 20 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → 𝑖 < (𝑠 + 1))
137136orcd 870 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖))
138 zre 12323 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℤ → 𝑠 ∈ ℝ)
139 1red 10976 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℤ → 1 ∈ ℝ)
140138, 139readdcld 11004 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℤ → (𝑠 + 1) ∈ ℝ)
141 zre 12323 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
142140, 141anim12ci 614 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
1431423adant1 1129 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
144 lttri2 11057 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
146145adantr 481 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
147137, 146mpbird 256 . . . . . . . . . . . . . . . . . 18 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → 𝑖 ≠ (𝑠 + 1))
148130, 147sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑠) → 𝑖 ≠ (𝑠 + 1))
149148ad2antlr 724 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 ≠ (𝑠 + 1))
150 neeq1 3006 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (𝑛 ≠ (𝑠 + 1) ↔ 𝑖 ≠ (𝑠 + 1)))
151150adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 ≠ (𝑠 + 1) ↔ 𝑖 ≠ (𝑠 + 1)))
152149, 151mpbird 256 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ≠ (𝑠 + 1))
153152adantr 481 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → 𝑛 ≠ (𝑠 + 1))
154153neneqd 2948 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → ¬ 𝑛 = (𝑠 + 1))
155154pm2.21d 121 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → (𝑛 = (𝑠 + 1) → (𝑇‘(𝑏𝑠)) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
156155imp 407 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏𝑠)) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
157106nnred 11988 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℝ)
158 eleq1w 2821 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝑛 ∈ ℝ ↔ 𝑖 ∈ ℝ))
159157, 158syl5ibrcom 246 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) → (𝑛 = 𝑖𝑛 ∈ ℝ))
160159adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑛 = 𝑖𝑛 ∈ ℝ))
161160imp 407 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ∈ ℝ)
16274nn0red 12294 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℝ)
163162ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑠 ∈ ℝ)
164 1red 10976 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 1 ∈ ℝ)
165163, 164readdcld 11004 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑠 + 1) ∈ ℝ)
166130, 136sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) → 𝑖 < (𝑠 + 1))
167166ad2antlr 724 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 < (𝑠 + 1))
168 breq1 5077 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
169168adantl 482 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
170167, 169mpbird 256 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 < (𝑠 + 1))
171161, 165, 170ltnsymd 11124 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → ¬ (𝑠 + 1) < 𝑛)
172171pm2.21d 121 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → ((𝑠 + 1) < 𝑛0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
173172ad2antrr 723 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → ((𝑠 + 1) < 𝑛0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
174173imp 407 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
175 simp-4r 781 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 = 𝑖)
176175fvoveq1d 7297 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑖 − 1)))
177176fveq2d 6778 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
178175fveq2d 6778 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑏𝑛) = (𝑏𝑖))
179178fveq2d 6778 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑇‘(𝑏𝑛)) = (𝑇‘(𝑏𝑖)))
180179oveq2d 7291 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))
181177, 180oveq12d 7293 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
182174, 181ifeqda 4495 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
183156, 182ifeqda 4495 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
184129, 183ifeqda 4495 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
185 ovexd 7310 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ V)
18625, 184, 108, 185fvmptd2 6883 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝐺𝑖) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
187186oveq2d 7291 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) = ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
188187mpteq2dva 5174 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
189188oveq2d 7291 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
190 nn0p1gt0 12262 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ0 → 0 < (𝑠 + 1))
191 0red 10978 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → 0 ∈ ℝ)
192 ltne 11072 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (𝑠 + 1)) → (𝑠 + 1) ≠ 0)
193191, 192sylan 580 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ0 ∧ 0 < (𝑠 + 1)) → (𝑠 + 1) ≠ 0)
194 neeq1 3006 . . . . . . . . . . . . . . 15 (𝑛 = (𝑠 + 1) → (𝑛 ≠ 0 ↔ (𝑠 + 1) ≠ 0))
195193, 194syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ0 ∧ 0 < (𝑠 + 1)) → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
19634, 190, 195syl2anc2 585 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
197196ad2antrl 725 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
198197imp 407 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) → 𝑛 ≠ 0)
199 eqneqall 2954 . . . . . . . . . . 11 (𝑛 = 0 → (𝑛 ≠ 0 → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (𝑇‘(𝑏𝑠))))
200198, 199mpan9 507 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (𝑇‘(𝑏𝑠)))
201 iftrue 4465 . . . . . . . . . . 11 (𝑛 = (𝑠 + 1) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = (𝑇‘(𝑏𝑠)))
202201ad2antlr 724 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = (𝑇‘(𝑏𝑠)))
203200, 202ifeqda 4495 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = (𝑇‘(𝑏𝑠)))
20474, 35syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
205 fvexd 6789 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ V)
20625, 203, 204, 205fvmptd2 6883 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘(𝑠 + 1)) = (𝑇‘(𝑏𝑠)))
207206oveq2d 7291 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
20843ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
209 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
21026, 7, 209vr1cl 21388 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
211208, 210syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
212 eqid 2738 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
213212, 209mgpbas 19726 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
214 eqid 2738 . . . . . . . . . . . . . 14 (1r𝑃) = (1r𝑃)
215212, 214ringidval 19739 . . . . . . . . . . . . 13 (1r𝑃) = (0g‘(mulGrp‘𝑃))
216213, 215, 28mulg0 18707 . . . . . . . . . . . 12 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (1r𝑃))
217211, 216syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r𝑃))
2187ply1crng 21369 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
219218anim2i 617 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
2202193adant3 1131 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
2218matsca2 21569 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
222220, 221syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
223222fveq2d 6778 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1r𝑃) = (1r‘(Scalar‘𝑌)))
224217, 223eqtrd 2778 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r‘(Scalar‘𝑌)))
225224adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 𝑋) = (1r‘(Scalar‘𝑌)))
226225oveq1d 7290 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) = ((1r‘(Scalar‘𝑌)) · (𝐺‘0)))
2277, 8pmatlmod 21842 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
2284, 227sylan2 593 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
2292283adant3 1131 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
23020, 21, 7, 8, 22, 23, 2, 24, 25chfacfisf 22003 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
2314, 230syl3anl2 1412 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
232231, 81ffvelrnd 6962 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘0) ∈ (Base‘𝑌))
233 eqid 2738 . . . . . . . . . 10 (Scalar‘𝑌) = (Scalar‘𝑌)
234 eqid 2738 . . . . . . . . . 10 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
2351, 233, 27, 234lmodvs1 20151 . . . . . . . . 9 ((𝑌 ∈ LMod ∧ (𝐺‘0) ∈ (Base‘𝑌)) → ((1r‘(Scalar‘𝑌)) · (𝐺‘0)) = (𝐺‘0))
236229, 232, 235syl2an2r 682 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r‘(Scalar‘𝑌)) · (𝐺‘0)) = (𝐺‘0))
237 iftrue 4465 . . . . . . . . 9 (𝑛 = 0 → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
238 ovexd 7310 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ V)
23925, 237, 81, 238fvmptd3 6898 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘0) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
240226, 236, 2393eqtrd 2782 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
241207, 240oveq12d 7293 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
2421, 3cmncom 19403 . . . . . . 7 ((𝑌 ∈ CMnd ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌)) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))))
24313, 83, 96, 242syl3anc 1370 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))))
244 ringgrp 19788 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
24510, 244syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
246245adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
247207, 96eqeltrrd 2840 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
24810adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
24924, 20, 21, 7, 8mat2pmatbas 21875 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
2504, 249syl3an2 1163 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
251250adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
252 simpl1 1190 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
253208adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
254 elmapi 8637 . . . . . . . . . . . 12 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
255254adantl 482 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
256255adantl 482 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
257 0elfz 13353 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → 0 ∈ (0...𝑠))
25834, 257syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
259258ad2antrl 725 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (0...𝑠))
260256, 259ffvelrnd 6962 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
26124, 20, 21, 7, 8mat2pmatbas 21875 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
262252, 253, 260, 261syl3anc 1370 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
2631, 22ringcl 19800 . . . . . . . 8 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
264248, 251, 262, 263syl3anc 1370 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
2651, 2, 23, 3grpsubadd0sub 18662 . . . . . . 7 ((𝑌 ∈ Grp ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
266246, 247, 264, 265syl3anc 1370 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
267241, 243, 2663eqtr4d 2788 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
268189, 267oveq12d 7293 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
269113, 268eqtrd 2778 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
27075, 102, 2693eqtrd 2782 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
27140, 73, 2703eqtrd 2782 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cun 3885  cin 3886  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  Grpcgrp 18577  -gcsg 18579  .gcmg 18700  CMndccmn 19386  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  CRingccrg 19784  LModclmod 20123  var1cv1 21347  Poly1cpl1 21348   Mat cmat 21554   matToPolyMat cmat2pmat 21853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-mamu 21533  df-mat 21555  df-mat2pmat 21856
This theorem is referenced by:  cpmadugsum  22027
  Copyright terms: Public domain W3C validator