MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmulgsum Structured version   Visualization version   GIF version

Theorem chfacfscmulgsum 22776
Description: Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfscmulcl.x 𝑋 = (var1𝑅)
chfacfscmulcl.m · = ( ·𝑠𝑌)
chfacfscmulcl.e = (.g‘(mulGrp‘𝑃))
chfacfscmulgsum.p + = (+g𝑌)
Assertion
Ref Expression
chfacfscmulgsum (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠,𝐵   0 ,𝑛   𝐵,𝑖,𝑠   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   ,𝑖   · ,𝑏,𝑖   𝑇,𝑛   ,𝑛   × ,𝑛   𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   + (𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   · (𝑛,𝑠)   × (𝑖,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem chfacfscmulgsum
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑌) = (Base‘𝑌)
2 chfacfisf.0 . . 3 0 = (0g𝑌)
3 chfacfscmulgsum.p . . 3 + = (+g𝑌)
4 crngring 20164 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
54anim2i 617 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
653adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7 chfacfisf.p . . . . . . 7 𝑃 = (Poly1𝑅)
8 chfacfisf.y . . . . . . 7 𝑌 = (𝑁 Mat 𝑃)
97, 8pmatring 22608 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
106, 9syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
11 ringcmn 20201 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ CMnd)
1210, 11syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ CMnd)
1312adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ CMnd)
14 nn0ex 12387 . . . 4 0 ∈ V
1514a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 ∈ V)
16 simpll 766 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
17 simplr 768 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
18 simpr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
1916, 17, 183jca 1128 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0))
20 chfacfisf.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21 chfacfisf.b . . . . 5 𝐵 = (Base‘𝐴)
22 chfacfisf.r . . . . 5 × = (.r𝑌)
23 chfacfisf.s . . . . 5 = (-g𝑌)
24 chfacfisf.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 chfacfisf.g . . . . 5 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
26 chfacfscmulcl.x . . . . 5 𝑋 = (var1𝑅)
27 chfacfscmulcl.m . . . . 5 · = ( ·𝑠𝑌)
28 chfacfscmulcl.e . . . . 5 = (.g‘(mulGrp‘𝑃))
2920, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 22773 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
3019, 29syl 17 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
3120, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulfsupp 22775 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))) finSupp 0 )
32 nn0disj 13544 . . . 4 ((0...(𝑠 + 1)) ∩ (ℤ‘((𝑠 + 1) + 1))) = ∅
3332a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0...(𝑠 + 1)) ∩ (ℤ‘((𝑠 + 1) + 1))) = ∅)
34 nnnn0 12388 . . . . . 6 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
35 peano2nn0 12421 . . . . . 6 (𝑠 ∈ ℕ0 → (𝑠 + 1) ∈ ℕ0)
3634, 35syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ0)
37 nn0split 13543 . . . . 5 ((𝑠 + 1) ∈ ℕ0 → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
3836, 37syl 17 . . . 4 (𝑠 ∈ ℕ → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
3938ad2antrl 728 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
401, 2, 3, 13, 15, 30, 31, 33, 39gsumsplit2 19842 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
41 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
42 simplr 768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
43 nncn 12133 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
44 add1p1 12372 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4543, 44syl 17 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4645ad2antrl 728 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) + 1) = (𝑠 + 2))
4746fveq2d 6826 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (ℤ‘((𝑠 + 1) + 1)) = (ℤ‘(𝑠 + 2)))
4847eleq2d 2817 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↔ 𝑖 ∈ (ℤ‘(𝑠 + 2))))
4948biimpa 476 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → 𝑖 ∈ (ℤ‘(𝑠 + 2)))
5020, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmul0 22774 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (ℤ‘(𝑠 + 2))) → ((𝑖 𝑋) · (𝐺𝑖)) = 0 )
5141, 42, 49, 50syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → ((𝑖 𝑋) · (𝐺𝑖)) = 0 )
5251mpteq2dva 5184 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))) = (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 ))
5352oveq2d 7362 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )))
544, 9sylan2 593 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
55 ringmnd 20162 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
5654, 55syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Mnd)
57563adant3 1132 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Mnd)
58 fvex 6835 . . . . . . . 8 (ℤ‘((𝑠 + 1) + 1)) ∈ V
5957, 58jctir 520 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V))
6059adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V))
612gsumz 18744 . . . . . 6 ((𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6260, 61syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6353, 62eqtrd 2766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = 0 )
6463oveq2d 7362 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ))
65 fzfid 13880 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0...(𝑠 + 1)) ∈ Fin)
66 elfznn0 13520 . . . . . . . 8 (𝑖 ∈ (0...(𝑠 + 1)) → 𝑖 ∈ ℕ0)
6766, 19sylan2 593 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0))
6867, 29syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
6968ralrimiva 3124 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 + 1))((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
701, 13, 65, 69gsummptcl 19880 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌))
711, 3, 2mndrid 18663 . . . 4 ((𝑌 ∈ Mnd ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7257, 70, 71syl2an2r 685 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7364, 72eqtrd 2766 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7434ad2antrl 728 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
751, 3, 13, 74, 68gsummptfzsplit 19845 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
76 elfznn0 13520 . . . . . . 7 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
7776, 30sylan2 593 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
781, 3, 13, 74, 77gsummptfzsplitl 19846 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
7957adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Mnd)
80 0nn0 12396 . . . . . . . 8 0 ∈ ℕ0
8180a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ ℕ0)
8220, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 22773 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 0 ∈ ℕ0) → ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌))
8381, 82mpd3an3 1464 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌))
84 oveq1 7353 . . . . . . . . 9 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
85 fveq2 6822 . . . . . . . . 9 (𝑖 = 0 → (𝐺𝑖) = (𝐺‘0))
8684, 85oveq12d 7364 . . . . . . . 8 (𝑖 = 0 → ((𝑖 𝑋) · (𝐺𝑖)) = ((0 𝑋) · (𝐺‘0)))
871, 86gsumsn 19867 . . . . . . 7 ((𝑌 ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌)) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((0 𝑋) · (𝐺‘0)))
8879, 81, 83, 87syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((0 𝑋) · (𝐺‘0)))
8988oveq2d 7362 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))))
9078, 89eqtrd 2766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))))
91 ovexd 7381 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ V)
92 1nn0 12397 . . . . . . . 8 1 ∈ ℕ0
9392a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℕ0)
9474, 93nn0addcld 12446 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
9520, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 22773 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ (𝑠 + 1) ∈ ℕ0) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))
9694, 95mpd3an3 1464 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))
97 oveq1 7353 . . . . . . 7 (𝑖 = (𝑠 + 1) → (𝑖 𝑋) = ((𝑠 + 1) 𝑋))
98 fveq2 6822 . . . . . . 7 (𝑖 = (𝑠 + 1) → (𝐺𝑖) = (𝐺‘(𝑠 + 1)))
9997, 98oveq12d 7364 . . . . . 6 (𝑖 = (𝑠 + 1) → ((𝑖 𝑋) · (𝐺𝑖)) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
1001, 99gsumsn 19867 . . . . 5 ((𝑌 ∈ Mnd ∧ (𝑠 + 1) ∈ V ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌)) → (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
10179, 91, 96, 100syl3anc 1373 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
10290, 101oveq12d 7364 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))))
103 fzfid 13880 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1...𝑠) ∈ Fin)
104 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
105 simplr 768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
106 elfznn 13453 . . . . . . . . . 10 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ)
107106nnnn0d 12442 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0)
108107adantl 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0)
109104, 105, 108, 29syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
110109ralrimiva 3124 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
1111, 13, 103, 110gsummptcl 19880 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌))
1121, 3mndass 18651 . . . . 5 ((𝑌 ∈ Mnd ∧ ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌) ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))))
11379, 111, 83, 96, 112syl13anc 1374 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))))
114106nnne0d 12175 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ≠ 0)
115114ad2antlr 727 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 ≠ 0)
116 neeq1 2990 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑛 ≠ 0 ↔ 𝑖 ≠ 0))
117116adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 ≠ 0 ↔ 𝑖 ≠ 0))
118115, 117mpbird 257 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ≠ 0)
119 eqneqall 2939 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑛 ≠ 0 → 0 = (𝑇‘(𝑏‘(𝑖 − 1)))))
120118, 119mpan9 506 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 0 = (𝑇‘(𝑏‘(𝑖 − 1))))
121 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 𝑛 = 𝑖)
122 eqeq1 2735 . . . . . . . . . . . . . . . . 17 (0 = 𝑛 → (0 = 𝑖𝑛 = 𝑖))
123122eqcoms 2739 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → (0 = 𝑖𝑛 = 𝑖))
124123adantl 481 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (0 = 𝑖𝑛 = 𝑖))
125121, 124mpbird 257 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 0 = 𝑖)
126125fveq2d 6826 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (𝑏‘0) = (𝑏𝑖))
127126fveq2d 6826 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (𝑇‘(𝑏‘0)) = (𝑇‘(𝑏𝑖)))
128127oveq2d 7362 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))
129120, 128oveq12d 7364 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
130 elfz2 13414 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) ↔ ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)))
131 zleltp1 12523 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
132131ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
1331323adant1 1130 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
134133biimpcd 249 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑠 → ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 < (𝑠 + 1)))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≤ 𝑖𝑖𝑠) → ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 < (𝑠 + 1)))
136135impcom 407 . . . . . . . . . . . . . . . . . . . 20 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → 𝑖 < (𝑠 + 1))
137136orcd 873 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖))
138 zre 12472 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℤ → 𝑠 ∈ ℝ)
139 1red 11113 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℤ → 1 ∈ ℝ)
140138, 139readdcld 11141 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℤ → (𝑠 + 1) ∈ ℝ)
141 zre 12472 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
142140, 141anim12ci 614 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
1431423adant1 1130 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
144 lttri2 11195 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
146145adantr 480 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
147137, 146mpbird 257 . . . . . . . . . . . . . . . . . 18 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → 𝑖 ≠ (𝑠 + 1))
148130, 147sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑠) → 𝑖 ≠ (𝑠 + 1))
149148ad2antlr 727 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 ≠ (𝑠 + 1))
150 neeq1 2990 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (𝑛 ≠ (𝑠 + 1) ↔ 𝑖 ≠ (𝑠 + 1)))
151150adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 ≠ (𝑠 + 1) ↔ 𝑖 ≠ (𝑠 + 1)))
152149, 151mpbird 257 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ≠ (𝑠 + 1))
153152adantr 480 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → 𝑛 ≠ (𝑠 + 1))
154153neneqd 2933 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → ¬ 𝑛 = (𝑠 + 1))
155154pm2.21d 121 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → (𝑛 = (𝑠 + 1) → (𝑇‘(𝑏𝑠)) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
156155imp 406 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏𝑠)) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
157106nnred 12140 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℝ)
158 eleq1w 2814 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝑛 ∈ ℝ ↔ 𝑖 ∈ ℝ))
159157, 158syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) → (𝑛 = 𝑖𝑛 ∈ ℝ))
160159adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑛 = 𝑖𝑛 ∈ ℝ))
161160imp 406 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ∈ ℝ)
16274nn0red 12443 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℝ)
163162ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑠 ∈ ℝ)
164 1red 11113 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 1 ∈ ℝ)
165163, 164readdcld 11141 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑠 + 1) ∈ ℝ)
166130, 136sylbi 217 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) → 𝑖 < (𝑠 + 1))
167166ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 < (𝑠 + 1))
168 breq1 5094 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
169168adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
170167, 169mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 < (𝑠 + 1))
171161, 165, 170ltnsymd 11262 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → ¬ (𝑠 + 1) < 𝑛)
172171pm2.21d 121 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → ((𝑠 + 1) < 𝑛0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
173172ad2antrr 726 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → ((𝑠 + 1) < 𝑛0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
174173imp 406 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
175 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 = 𝑖)
176175fvoveq1d 7368 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑖 − 1)))
177176fveq2d 6826 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
178175fveq2d 6826 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑏𝑛) = (𝑏𝑖))
179178fveq2d 6826 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑇‘(𝑏𝑛)) = (𝑇‘(𝑏𝑖)))
180179oveq2d 7362 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))
181177, 180oveq12d 7364 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
182174, 181ifeqda 4512 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
183156, 182ifeqda 4512 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
184129, 183ifeqda 4512 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
185 ovexd 7381 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ V)
18625, 184, 108, 185fvmptd2 6937 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝐺𝑖) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
187186oveq2d 7362 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) = ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
188187mpteq2dva 5184 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
189188oveq2d 7362 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
190 nn0p1gt0 12410 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ0 → 0 < (𝑠 + 1))
191 0red 11115 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → 0 ∈ ℝ)
192 ltne 11210 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (𝑠 + 1)) → (𝑠 + 1) ≠ 0)
193191, 192sylan 580 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ0 ∧ 0 < (𝑠 + 1)) → (𝑠 + 1) ≠ 0)
194 neeq1 2990 . . . . . . . . . . . . . . 15 (𝑛 = (𝑠 + 1) → (𝑛 ≠ 0 ↔ (𝑠 + 1) ≠ 0))
195193, 194syl5ibrcom 247 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ0 ∧ 0 < (𝑠 + 1)) → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
19634, 190, 195syl2anc2 585 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
197196ad2antrl 728 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
198197imp 406 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) → 𝑛 ≠ 0)
199 eqneqall 2939 . . . . . . . . . . 11 (𝑛 = 0 → (𝑛 ≠ 0 → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (𝑇‘(𝑏𝑠))))
200198, 199mpan9 506 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (𝑇‘(𝑏𝑠)))
201 iftrue 4481 . . . . . . . . . . 11 (𝑛 = (𝑠 + 1) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = (𝑇‘(𝑏𝑠)))
202201ad2antlr 727 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = (𝑇‘(𝑏𝑠)))
203200, 202ifeqda 4512 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = (𝑇‘(𝑏𝑠)))
20474, 35syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
205 fvexd 6837 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ V)
20625, 203, 204, 205fvmptd2 6937 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘(𝑠 + 1)) = (𝑇‘(𝑏𝑠)))
207206oveq2d 7362 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
20843ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
209 eqid 2731 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
21026, 7, 209vr1cl 22131 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
211208, 210syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
212 eqid 2731 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
213212, 209mgpbas 20064 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
214 eqid 2731 . . . . . . . . . . . . . 14 (1r𝑃) = (1r𝑃)
215212, 214ringidval 20102 . . . . . . . . . . . . 13 (1r𝑃) = (0g‘(mulGrp‘𝑃))
216213, 215, 28mulg0 18987 . . . . . . . . . . . 12 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (1r𝑃))
217211, 216syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r𝑃))
2187ply1crng 22112 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
219218anim2i 617 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
2202193adant3 1132 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
2218matsca2 22336 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
222220, 221syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
223222fveq2d 6826 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1r𝑃) = (1r‘(Scalar‘𝑌)))
224217, 223eqtrd 2766 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r‘(Scalar‘𝑌)))
225224adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 𝑋) = (1r‘(Scalar‘𝑌)))
226225oveq1d 7361 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) = ((1r‘(Scalar‘𝑌)) · (𝐺‘0)))
2277, 8pmatlmod 22609 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
2284, 227sylan2 593 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
2292283adant3 1132 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
23020, 21, 7, 8, 22, 23, 2, 24, 25chfacfisf 22770 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
2314, 230syl3anl2 1415 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
232231, 81ffvelcdmd 7018 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘0) ∈ (Base‘𝑌))
233 eqid 2731 . . . . . . . . . 10 (Scalar‘𝑌) = (Scalar‘𝑌)
234 eqid 2731 . . . . . . . . . 10 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
2351, 233, 27, 234lmodvs1 20824 . . . . . . . . 9 ((𝑌 ∈ LMod ∧ (𝐺‘0) ∈ (Base‘𝑌)) → ((1r‘(Scalar‘𝑌)) · (𝐺‘0)) = (𝐺‘0))
236229, 232, 235syl2an2r 685 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r‘(Scalar‘𝑌)) · (𝐺‘0)) = (𝐺‘0))
237 iftrue 4481 . . . . . . . . 9 (𝑛 = 0 → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
238 ovexd 7381 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ V)
23925, 237, 81, 238fvmptd3 6952 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘0) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
240226, 236, 2393eqtrd 2770 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
241207, 240oveq12d 7364 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
2421, 3cmncom 19711 . . . . . . 7 ((𝑌 ∈ CMnd ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌)) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))))
24313, 83, 96, 242syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))))
244 ringgrp 20157 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
24510, 244syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
246245adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
247207, 96eqeltrrd 2832 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
24810adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
24924, 20, 21, 7, 8mat2pmatbas 22642 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
2504, 249syl3an2 1164 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
251250adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
252 simpl1 1192 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
253208adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
254 elmapi 8773 . . . . . . . . . . . 12 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
255254adantl 481 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
256255adantl 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
257 0elfz 13524 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → 0 ∈ (0...𝑠))
25834, 257syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
259258ad2antrl 728 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (0...𝑠))
260256, 259ffvelcdmd 7018 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
26124, 20, 21, 7, 8mat2pmatbas 22642 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
262252, 253, 260, 261syl3anc 1373 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
2631, 22ringcl 20169 . . . . . . . 8 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
264248, 251, 262, 263syl3anc 1373 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
2651, 2, 23, 3grpsubadd0sub 18940 . . . . . . 7 ((𝑌 ∈ Grp ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
266246, 247, 264, 265syl3anc 1373 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
267241, 243, 2663eqtr4d 2776 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
268189, 267oveq12d 7364 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
269113, 268eqtrd 2766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
27075, 102, 2693eqtrd 2770 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
27140, 73, 2703eqtrd 2770 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cun 3900  cin 3901  c0 4283  ifcif 4475  {csn 4576   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  Grpcgrp 18846  -gcsg 18848  .gcmg 18980  CMndccmn 19693  mulGrpcmgp 20059  1rcur 20100  Ringcrg 20152  CRingccrg 20153  LModclmod 20794  var1cv1 22089  Poly1cpl1 22090   Mat cmat 22323   matToPolyMat cmat2pmat 22620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-ascl 21793  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-mamu 22307  df-mat 22324  df-mat2pmat 22623
This theorem is referenced by:  cpmadugsum  22794
  Copyright terms: Public domain W3C validator