MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfpmmul0 Structured version   Visualization version   GIF version

Theorem chfacfpmmul0 22780
Description: The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
chfacfpmmul0 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   𝑛,𝐾   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chfacfpmmul0
StepHypRef Expression
1 eluz2 12856 . . . . . 6 (𝐾 ∈ (ℤ‘(𝑠 + 2)) ↔ ((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾))
2 simpll 765 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℤ)
3 nngt0 12271 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → 0 < 𝑠)
4 nnre 12247 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
54adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℝ)
6 2rp 13009 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
76a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ+)
85, 7ltaddrpd 13079 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 < (𝑠 + 2))
9 0red 11245 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 ∈ ℝ)
10 2re 12314 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ)
125, 11readdcld 11271 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) ∈ ℝ)
13 lttr 11318 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
149, 5, 12, 13syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
158, 14mpan2d 692 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (0 < 𝑠 → 0 < (𝑠 + 2)))
1615ex 411 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℤ → (𝑠 ∈ ℕ → (0 < 𝑠 → 0 < (𝑠 + 2))))
1716com13 88 . . . . . . . . . . . . . . . 16 (0 < 𝑠 → (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2))))
183, 17mpcom 38 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2)))
1918impcom 406 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 < (𝑠 + 2))
20 zre 12590 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2120adantr 479 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝐾 ∈ ℝ)
22 ltleletr 11335 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
239, 12, 21, 22syl3anc 1368 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
2419, 23mpand 693 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → 0 ≤ 𝐾))
2524imp 405 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾)
26 elnn0z 12599 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
272, 25, 26sylanbrc 581 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℕ0)
28 nncn 12248 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
29 add1p1 12491 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3028, 29syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3130adantl 480 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) + 1) = (𝑠 + 2))
3231eqcomd 2731 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) = ((𝑠 + 1) + 1))
3332breq1d 5153 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
34 nnz 12607 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
3534peano2zd 12697 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
3635anim2i 615 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝐾 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ))
3736ancomd 460 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
38 zltp1le 12640 . . . . . . . . . . . . . . 15 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑠 + 1) < 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
3938bicomd 222 . . . . . . . . . . . . . 14 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4037, 39syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4133, 40bitrd 278 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4241biimpa 475 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 + 1) < 𝐾)
4327, 42jca 510 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾))
4443ex 411 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4544impancom 450 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
46453adant1 1127 . . . . . . 7 (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4746com12 32 . . . . . 6 (𝑠 ∈ ℕ → (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
481, 47biimtrid 241 . . . . 5 (𝑠 ∈ ℕ → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4948adantr 479 . . . 4 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
5049adantl 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
51 cayhamlem1.g . . . . . . 7 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
52 0red 11245 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ ℝ)
53 peano2re 11415 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → (𝑠 + 1) ∈ ℝ)
544, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5554adantr 479 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑠 + 1) ∈ ℝ)
5655adantl 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℝ)
5756ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) ∈ ℝ)
58 nn0re 12509 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5958ad2antlr 725 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℝ)
60 nnnn0 12507 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
6160adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
6261ad2antlr 725 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℕ0)
63 nn0p1gt0 12529 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → 0 < (𝑠 + 1))
6462, 63syl 17 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 0 < (𝑠 + 1))
6564adantr 479 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < (𝑠 + 1))
66 simpr 483 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) < 𝐾)
6752, 57, 59, 65, 66lttrd 11403 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < 𝐾)
6867gt0ne0d 11806 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ 0)
6968neneqd 2935 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = 0)
7069adantr 479 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = 0)
71 eqeq1 2729 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = 0 ↔ 𝐾 = 0))
7271notbid 317 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7372adantl 480 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7470, 73mpbird 256 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = 0)
7574iffalsed 4535 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))
7655ad2antlr 725 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
77 ltne 11339 . . . . . . . . . . . . 13 (((𝑠 + 1) ∈ ℝ ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
7876, 77sylan 578 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
7978neneqd 2935 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = (𝑠 + 1))
8079adantr 479 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = (𝑠 + 1))
81 eqeq1 2729 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = (𝑠 + 1) ↔ 𝐾 = (𝑠 + 1)))
8281notbid 317 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8382adantl 480 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8480, 83mpbird 256 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = (𝑠 + 1))
8584iffalsed 4535 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))
86 simplr 767 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝐾)
87 breq2 5147 . . . . . . . . . . 11 (𝑛 = 𝐾 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
8887adantl 480 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
8986, 88mpbird 256 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝑛)
9089iftrued 4532 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = 0 )
9175, 85, 903eqtrd 2769 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = 0 )
92 simplr 767 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℕ0)
93 cayhamlem1.0 . . . . . . . . 9 0 = (0g𝑌)
9493fvexi 6905 . . . . . . . 8 0 ∈ V
9594a1i 11 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ V)
9651, 91, 92, 95fvmptd2 7007 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝐺𝐾) = 0 )
9796oveq2d 7431 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = ((𝐾 (𝑇𝑀)) × 0 ))
98 crngring 20187 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
99 cayhamlem1.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
100 cayhamlem1.y . . . . . . . . . . 11 𝑌 = (𝑁 Mat 𝑃)
10199, 100pmatring 22610 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
10298, 101sylan2 591 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
1031023adant3 1129 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
104103adantr 479 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
105104ad2antrr 724 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝑌 ∈ Ring)
106 eqid 2725 . . . . . . . . 9 (mulGrp‘𝑌) = (mulGrp‘𝑌)
107 eqid 2725 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
108106, 107mgpbas 20082 . . . . . . . 8 (Base‘𝑌) = (Base‘(mulGrp‘𝑌))
109 cayhamlem1.e . . . . . . . 8 = (.g‘(mulGrp‘𝑌))
110106ringmgp 20181 . . . . . . . . . 10 (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd)
111103, 110syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑌) ∈ Mnd)
112111ad2antrr 724 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑌) ∈ Mnd)
113 simpr 483 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
114 cayhamlem1.t . . . . . . . . . . 11 𝑇 = (𝑁 matToPolyMat 𝑅)
115 cayhamlem1.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
116 cayhamlem1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
117114, 115, 116, 99, 100mat2pmatbas 22644 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
11898, 117syl3an2 1161 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
119118ad2antrr 724 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑇𝑀) ∈ (Base‘𝑌))
120108, 109, 112, 113, 119mulgnn0cld 19052 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝐾 (𝑇𝑀)) ∈ (Base‘𝑌))
121120adantr 479 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝐾 (𝑇𝑀)) ∈ (Base‘𝑌))
122 cayhamlem1.r . . . . . . 7 × = (.r𝑌)
123107, 122, 93ringrz 20232 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝐾 (𝑇𝑀)) ∈ (Base‘𝑌)) → ((𝐾 (𝑇𝑀)) × 0 ) = 0 )
124105, 121, 123syl2anc 582 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × 0 ) = 0 )
12597, 124eqtrd 2765 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 )
126125expl 456 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 ))
12750, 126syld 47 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 ))
1281273impia 1114 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  ifcif 4524   class class class wbr 5143  cmpt 5226  cfv 6542  (class class class)co 7415  m cmap 8841  Fincfn 8960  cc 11134  cr 11135  0cc0 11136  1c1 11137   + caddc 11139   < clt 11276  cle 11277  cmin 11472  cn 12240  2c2 12295  0cn0 12500  cz 12586  cuz 12850  +crp 13004  ...cfz 13514  Basecbs 17177  .rcmulr 17231  0gc0g 17418  Mndcmnd 18691  -gcsg 18894  .gcmg 19025  mulGrpcmgp 20076  Ringcrg 20175  CRingccrg 20176  Poly1cpl1 22102   Mat cmat 22323   matToPolyMat cmat2pmat 22622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658  df-seq 13997  df-hash 14320  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-hom 17254  df-cco 17255  df-0g 17420  df-gsum 17421  df-prds 17426  df-pws 17428  df-mre 17563  df-mrc 17564  df-acs 17566  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-mhm 18737  df-submnd 18738  df-grp 18895  df-minusg 18896  df-sbg 18897  df-mulg 19026  df-subg 19080  df-ghm 19170  df-cntz 19270  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-ring 20177  df-cring 20178  df-subrng 20485  df-subrg 20510  df-lmod 20747  df-lss 20818  df-sra 21060  df-rgmod 21061  df-dsmm 21668  df-frlm 21683  df-ascl 21791  df-psr 21844  df-mpl 21846  df-opsr 21848  df-psr1 22105  df-ply1 22107  df-mamu 22307  df-mat 22324  df-mat2pmat 22625
This theorem is referenced by:  chfacfpmmulfsupp  22781  chfacfpmmulgsum  22782
  Copyright terms: Public domain W3C validator