MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfpmmul0 Structured version   Visualization version   GIF version

Theorem chfacfpmmul0 21471
Description: The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
chfacfpmmul0 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   𝑛,𝐾   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem chfacfpmmul0
StepHypRef Expression
1 eluz2 12241 . . . . . 6 (𝐾 ∈ (ℤ‘(𝑠 + 2)) ↔ ((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾))
2 simpll 766 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℤ)
3 nngt0 11660 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → 0 < 𝑠)
4 nnre 11636 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
54adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℝ)
6 2rp 12386 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
76a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ+)
85, 7ltaddrpd 12456 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 < (𝑠 + 2))
9 0red 10637 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 ∈ ℝ)
10 2re 11703 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
1110a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 2 ∈ ℝ)
125, 11readdcld 10663 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) ∈ ℝ)
13 lttr 10710 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
149, 5, 12, 13syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < 𝑠𝑠 < (𝑠 + 2)) → 0 < (𝑠 + 2)))
158, 14mpan2d 693 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (0 < 𝑠 → 0 < (𝑠 + 2)))
1615ex 416 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℤ → (𝑠 ∈ ℕ → (0 < 𝑠 → 0 < (𝑠 + 2))))
1716com13 88 . . . . . . . . . . . . . . . 16 (0 < 𝑠 → (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2))))
183, 17mpcom 38 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝐾 ∈ ℤ → 0 < (𝑠 + 2)))
1918impcom 411 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 0 < (𝑠 + 2))
20 zre 11977 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2120adantr 484 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝐾 ∈ ℝ)
22 ltleletr 10726 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑠 + 2) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
239, 12, 21, 22syl3anc 1368 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((0 < (𝑠 + 2) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾))
2419, 23mpand 694 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → 0 ≤ 𝐾))
2524imp 410 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 0 ≤ 𝐾)
26 elnn0z 11986 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
272, 25, 26sylanbrc 586 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → 𝐾 ∈ ℕ0)
28 nncn 11637 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
29 add1p1 11880 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3028, 29syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
3130adantl 485 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) + 1) = (𝑠 + 2))
3231eqcomd 2807 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑠 + 2) = ((𝑠 + 1) + 1))
3332breq1d 5043 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
34 nnz 11996 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
3534peano2zd 12082 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
3635anim2i 619 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝐾 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ))
3736ancomd 465 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
38 zltp1le 12024 . . . . . . . . . . . . . . 15 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑠 + 1) < 𝐾 ↔ ((𝑠 + 1) + 1) ≤ 𝐾))
3938bicomd 226 . . . . . . . . . . . . . 14 (((𝑠 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4037, 39syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (((𝑠 + 1) + 1) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4133, 40bitrd 282 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 ↔ (𝑠 + 1) < 𝐾))
4241biimpa 480 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 + 1) < 𝐾)
4327, 42jca 515 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾))
4443ex 416 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 2) ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4544impancom 455 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
46453adant1 1127 . . . . . . 7 (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝑠 ∈ ℕ → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4746com12 32 . . . . . 6 (𝑠 ∈ ℕ → (((𝑠 + 2) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
481, 47syl5bi 245 . . . . 5 (𝑠 ∈ ℕ → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
4948adantr 484 . . . 4 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
5049adantl 485 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → (𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾)))
51 cayhamlem1.g . . . . . . 7 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
52 0red 10637 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ ℝ)
53 peano2re 10806 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → (𝑠 + 1) ∈ ℝ)
544, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5554adantr 484 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑠 + 1) ∈ ℝ)
5655adantl 485 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℝ)
5756ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) ∈ ℝ)
58 nn0re 11898 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5958ad2antlr 726 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℝ)
60 nnnn0 11896 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
6160adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
6261ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℕ0)
63 nn0p1gt0 11918 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → 0 < (𝑠 + 1))
6462, 63syl 17 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 0 < (𝑠 + 1))
6564adantr 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < (𝑠 + 1))
66 simpr 488 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝑠 + 1) < 𝐾)
6752, 57, 59, 65, 66lttrd 10794 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 < 𝐾)
6867gt0ne0d 11197 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ 0)
6968neneqd 2995 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = 0)
7069adantr 484 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = 0)
71 eqeq1 2805 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = 0 ↔ 𝐾 = 0))
7271notbid 321 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7372adantl 485 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = 0 ↔ ¬ 𝐾 = 0))
7470, 73mpbird 260 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = 0)
7574iffalsed 4439 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))))
7655ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
77 ltne 10730 . . . . . . . . . . . . 13 (((𝑠 + 1) ∈ ℝ ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
7876, 77sylan 583 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ≠ (𝑠 + 1))
7978neneqd 2995 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ¬ 𝐾 = (𝑠 + 1))
8079adantr 484 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝐾 = (𝑠 + 1))
81 eqeq1 2805 . . . . . . . . . . . 12 (𝑛 = 𝐾 → (𝑛 = (𝑠 + 1) ↔ 𝐾 = (𝑠 + 1)))
8281notbid 321 . . . . . . . . . . 11 (𝑛 = 𝐾 → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8382adantl 485 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (¬ 𝑛 = (𝑠 + 1) ↔ ¬ 𝐾 = (𝑠 + 1)))
8480, 83mpbird 260 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ¬ 𝑛 = (𝑠 + 1))
8584iffalsed 4439 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))
86 simplr 768 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝐾)
87 breq2 5037 . . . . . . . . . . 11 (𝑛 = 𝐾 → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
8887adantl 485 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → ((𝑠 + 1) < 𝑛 ↔ (𝑠 + 1) < 𝐾))
8986, 88mpbird 260 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → (𝑠 + 1) < 𝑛)
9089iftrued 4436 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = 0 )
9175, 85, 903eqtrd 2840 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) ∧ 𝑛 = 𝐾) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = 0 )
92 simplr 768 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝐾 ∈ ℕ0)
93 cayhamlem1.0 . . . . . . . . 9 0 = (0g𝑌)
9493fvexi 6663 . . . . . . . 8 0 ∈ V
9594a1i 11 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 0 ∈ V)
9651, 91, 92, 95fvmptd2 6757 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝐺𝐾) = 0 )
9796oveq2d 7155 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = ((𝐾 (𝑇𝑀)) × 0 ))
98 crngring 19306 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
99 cayhamlem1.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
100 cayhamlem1.y . . . . . . . . . . 11 𝑌 = (𝑁 Mat 𝑃)
10199, 100pmatring 21301 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
10298, 101sylan2 595 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
1031023adant3 1129 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
104103adantr 484 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
105104ad2antrr 725 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → 𝑌 ∈ Ring)
106 eqid 2801 . . . . . . . . . . 11 (mulGrp‘𝑌) = (mulGrp‘𝑌)
107106ringmgp 19300 . . . . . . . . . 10 (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd)
108103, 107syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑌) ∈ Mnd)
109108ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (mulGrp‘𝑌) ∈ Mnd)
110 simpr 488 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
111 cayhamlem1.t . . . . . . . . . . 11 𝑇 = (𝑁 matToPolyMat 𝑅)
112 cayhamlem1.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
113 cayhamlem1.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
114111, 112, 113, 99, 100mat2pmatbas 21335 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
11598, 114syl3an2 1161 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
116115ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝑇𝑀) ∈ (Base‘𝑌))
117 eqid 2801 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
118106, 117mgpbas 19242 . . . . . . . . 9 (Base‘𝑌) = (Base‘(mulGrp‘𝑌))
119 cayhamlem1.e . . . . . . . . 9 = (.g‘(mulGrp‘𝑌))
120118, 119mulgnn0cl 18240 . . . . . . . 8 (((mulGrp‘𝑌) ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → (𝐾 (𝑇𝑀)) ∈ (Base‘𝑌))
121109, 110, 116, 120syl3anc 1368 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) → (𝐾 (𝑇𝑀)) ∈ (Base‘𝑌))
122121adantr 484 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → (𝐾 (𝑇𝑀)) ∈ (Base‘𝑌))
123 cayhamlem1.r . . . . . . 7 × = (.r𝑌)
124117, 123, 93ringrz 19338 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝐾 (𝑇𝑀)) ∈ (Base‘𝑌)) → ((𝐾 (𝑇𝑀)) × 0 ) = 0 )
125105, 122, 124syl2anc 587 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × 0 ) = 0 )
12697, 125eqtrd 2836 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝐾 ∈ ℕ0) ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 )
127126expl 461 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐾 ∈ ℕ0 ∧ (𝑠 + 1) < 𝐾) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 ))
12850, 127syld 47 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐾 ∈ (ℤ‘(𝑠 + 2)) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 ))
1291283impia 1114 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝐾 ∈ (ℤ‘(𝑠 + 2))) → ((𝐾 (𝑇𝑀)) × (𝐺𝐾)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  Vcvv 3444  ifcif 4428   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  m cmap 8393  Fincfn 8496  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668  cle 10669  cmin 10863  cn 11629  2c2 11684  0cn0 11889  cz 11973  cuz 12235  +crp 12381  ...cfz 12889  Basecbs 16479  .rcmulr 16562  0gc0g 16709  Mndcmnd 17907  -gcsg 18101  .gcmg 18220  mulGrpcmgp 19236  Ringcrg 19294  CRingccrg 19295  Poly1cpl1 20810   Mat cmat 21016   matToPolyMat cmat2pmat 21313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-subrg 19530  df-lmod 19633  df-lss 19701  df-sra 19941  df-rgmod 19942  df-dsmm 20425  df-frlm 20440  df-ascl 20548  df-psr 20598  df-mpl 20600  df-opsr 20602  df-psr1 20813  df-ply1 20815  df-mamu 20995  df-mat 21017  df-mat2pmat 21316
This theorem is referenced by:  chfacfpmmulfsupp  21472  chfacfpmmulgsum  21473
  Copyright terms: Public domain W3C validator