Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccatw2s1len | Structured version Visualization version GIF version |
Description: The length of the concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 5-Mar-2022.) |
Ref | Expression |
---|---|
ccatw2s1len | ⊢ (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatws1clv 14367 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word V) | |
2 | ccatws1len 14370 | . . 3 ⊢ ((𝑊 ++ ⟨“𝑋”⟩) ∈ Word V → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) + 1)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) + 1)) |
4 | ccatws1len 14370 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1)) | |
5 | 4 | oveq1d 7322 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) + 1) = (((♯‘𝑊) + 1) + 1)) |
6 | lencl 14281 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
7 | nn0cn 12289 | . . 3 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ) | |
8 | add1p1 12270 | . . 3 ⊢ ((♯‘𝑊) ∈ ℂ → (((♯‘𝑊) + 1) + 1) = ((♯‘𝑊) + 2)) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) + 1) + 1) = ((♯‘𝑊) + 2)) |
10 | 3, 5, 9 | 3eqtrd 2780 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 1c1 10918 + caddc 10920 2c2 12074 ℕ0cn0 12279 ♯chash 14090 Word cword 14262 ++ cconcat 14318 ⟨“cs1 14345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-hash 14091 df-word 14263 df-concat 14319 df-s1 14346 |
This theorem is referenced by: clwwlknonex2 28518 |
Copyright terms: Public domain | W3C validator |