Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2 47441
Description: Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 47443): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem fmtnoprmfac2
StepHypRef Expression
1 breq1 5169 . . . . . . 7 (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
21adantr 480 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3 eluzge2nn0 12952 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
4 fmtnoodd 47407 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ¬ 2 ∥ (FermatNo‘𝑁))
65adantl 481 . . . . . . 7 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → ¬ 2 ∥ (FermatNo‘𝑁))
76pm2.21d 121 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
82, 7sylbid 240 . . . . 5 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98a1d 25 . . . 4 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
109ex 412 . . 3 (𝑃 = 2 → (𝑁 ∈ (ℤ‘2) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
11103impd 1348 . 2 (𝑃 = 2 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12 simpr1 1194 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
13 neqne 2954 . . . . . . . . . 10 𝑃 = 2 → 𝑃 ≠ 2)
1413anim2i 616 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
15 eldifsn 4811 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1614, 15sylibr 234 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ (ℙ ∖ {2}))
1716ex 412 . . . . . . 7 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
18173ad2ant2 1134 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
1918impcom 407 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖ {2}))
20 simpr3 1196 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁))
21 fmtnoprmfac2lem1 47440 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
2212, 19, 20, 21syl3anc 1371 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
23 simpl 482 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ ℙ)
24 2nn 12366 . . . . . . . . . . . . 13 2 ∈ ℕ
2524a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ∈ ℕ)
26 oddprm 16857 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2716, 26syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 − 1) / 2) ∈ ℕ)
2827nnnn0d 12613 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
2925, 28nnexpcld 14294 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2↑((𝑃 − 1) / 2)) ∈ ℕ)
3029nnzd 12666 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2↑((𝑃 − 1) / 2)) ∈ ℤ)
3123, 30jca 511 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ))
3231ex 412 . . . . . . . 8 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ)))
33323ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ)))
3433impcom 407 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ))
35 modprm1div 16844 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1)))
3634, 35syl 17 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1)))
37 prmnn 16721 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3837adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ ℕ)
39 2z 12675 . . . . . . . . . . . . 13 2 ∈ ℤ
4039a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ∈ ℤ)
4113necomd 3002 . . . . . . . . . . . . . 14 𝑃 = 2 → 2 ≠ 𝑃)
4241adantl 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ≠ 𝑃)
43 2prm 16739 . . . . . . . . . . . . . . . . 17 2 ∈ ℙ
4443a1i 11 . . . . . . . . . . . . . . . 16 𝑃 = 2 → 2 ∈ ℙ)
4544anim2i 616 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 2 ∈ ℙ))
4645ancomd 461 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
47 prmrp 16759 . . . . . . . . . . . . . 14 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4846, 47syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4942, 48mpbird 257 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2 gcd 𝑃) = 1)
5038, 40, 493jca 1128 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
5150, 28jca 511 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
5251ex 412 . . . . . . . . 9 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0)))
53523ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0)))
5453impcom 407 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
55 odzdvds 16842 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) ↔ ((od𝑃)‘2) ∥ ((𝑃 − 1) / 2)))
5654, 55syl 17 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) ↔ ((od𝑃)‘2) ∥ ((𝑃 − 1) / 2)))
57 eluz2nn 12949 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
58573ad2ant1 1133 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ ℕ)
5958adantl 481 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ)
60 fmtnoprmfac1lem 47438 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
6159, 19, 20, 60syl3anc 1371 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
62 breq1 5169 . . . . . . . . . 10 (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) ↔ (2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2)))
6362adantl 481 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) ↔ (2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2)))
6424a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
65 peano2nn 12305 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
6657, 65syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 12613 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
6864, 67nnexpcld 14294 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
69 nndivides 16312 . . . . . . . . . . . . . . 15 (((2↑(𝑁 + 1)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2)))
7068, 27, 69syl2an 595 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2)))
71 eqcom 2747 . . . . . . . . . . . . . . . . . . 19 ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))))
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1)))))
7337nncnd 12309 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
74 peano2cnm 11602 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℂ)
7675adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (𝑃 − 1) ∈ ℂ)
7776adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑃 − 1) ∈ ℂ)
78 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7968ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℕ)
8078, 79nnmulcld 12346 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℕ)
8180nncnd 12309 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ)
82 2cnne0 12503 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℂ ∧ 2 ≠ 0)
8382a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2 ∈ ℂ ∧ 2 ≠ 0))
84 divmul3 11954 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) ∈ ℂ ∧ (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))) ↔ (𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2)))
8577, 81, 83, 84syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))) ↔ (𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2)))
86 nncn 12301 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
8786adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
8868nncnd 12309 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
8988ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
90 2cnd 12371 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
9187, 89, 90mulassd 11313 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) · 2) = (𝑘 · ((2↑(𝑁 + 1)) · 2)))
92 2cnd 12371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 2 ∈ ℂ)
9365nnnn0d 12613 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
9492, 93expp1d 14197 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
95 nncn 12301 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
96 add1p1 12544 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
9795, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
9897oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (2↑((𝑁 + 1) + 1)) = (2↑(𝑁 + 2)))
9994, 98eqtr3d 2782 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
10057, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
101100ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
102101oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · ((2↑(𝑁 + 1)) · 2)) = (𝑘 · (2↑(𝑁 + 2))))
10391, 102eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) · 2) = (𝑘 · (2↑(𝑁 + 2))))
104103eqeq2d 2751 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 2)))))
10573adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ)
106105adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℂ)
107 1cnd 11285 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
108 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
10924a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 2 ∈ ℕ)
110108, 109nnaddcld 12345 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
111110nnnn0d 12613 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ0)
11257, 111syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
11364, 112nnexpcld 14294 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ)
114113nncnd 12309 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
115114ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 2)) ∈ ℂ)
11687, 115mulcld 11310 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 2))) ∈ ℂ)
117106, 107, 116subadd2d 11666 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 2))) ↔ ((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃))
118 eqcom 2747 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
119118a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
120104, 117, 1193bitrd 305 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12172, 85, 1203bitrd 305 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
122121rexbidva 3183 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
123122biimpd 229 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
124123adantrr 716 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12570, 124sylbid 240 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
126125expr 456 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 = 2 → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
1271263adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
128127impcom 407 . . . . . . . . . 10 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
129128adantr 480 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13063, 129sylbid 240 . . . . . . . 8 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
131130ex 412 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
13261, 131mpd 15 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13356, 132sylbid 240 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13436, 133sylbid 240 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13522, 134mpd 15 . . 3 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
136135ex 412 . 2 𝑃 = 2 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13711, 136pm2.61i 182 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903   mod cmo 13920  cexp 14112  cdvds 16302   gcd cgcd 16540  cprime 16718  odcodz 16810  FermatNocfmtno 47401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952  df-dvds 16303  df-gcd 16541  df-prm 16719  df-odz 16812  df-phi 16813  df-pc 16884  df-lgs 27357  df-fmtno 47402
This theorem is referenced by:  fmtnofac2  47443  fmtno4prmfac  47446
  Copyright terms: Public domain W3C validator