Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2 46812
Description: Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 46814): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem fmtnoprmfac2
StepHypRef Expression
1 breq1 5144 . . . . . . 7 (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
21adantr 480 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3 eluzge2nn0 12875 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
4 fmtnoodd 46778 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ¬ 2 ∥ (FermatNo‘𝑁))
65adantl 481 . . . . . . 7 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → ¬ 2 ∥ (FermatNo‘𝑁))
76pm2.21d 121 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
82, 7sylbid 239 . . . . 5 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98a1d 25 . . . 4 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
109ex 412 . . 3 (𝑃 = 2 → (𝑁 ∈ (ℤ‘2) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
11103impd 1345 . 2 (𝑃 = 2 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12 simpr1 1191 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
13 neqne 2942 . . . . . . . . . 10 𝑃 = 2 → 𝑃 ≠ 2)
1413anim2i 616 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
15 eldifsn 4785 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1614, 15sylibr 233 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ (ℙ ∖ {2}))
1716ex 412 . . . . . . 7 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
18173ad2ant2 1131 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
1918impcom 407 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖ {2}))
20 simpr3 1193 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁))
21 fmtnoprmfac2lem1 46811 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
2212, 19, 20, 21syl3anc 1368 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
23 simpl 482 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ ℙ)
24 2nn 12289 . . . . . . . . . . . . 13 2 ∈ ℕ
2524a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ∈ ℕ)
26 oddprm 16752 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2716, 26syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 − 1) / 2) ∈ ℕ)
2827nnnn0d 12536 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
2925, 28nnexpcld 14213 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2↑((𝑃 − 1) / 2)) ∈ ℕ)
3029nnzd 12589 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2↑((𝑃 − 1) / 2)) ∈ ℤ)
3123, 30jca 511 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ))
3231ex 412 . . . . . . . 8 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ)))
33323ad2ant2 1131 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ)))
3433impcom 407 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ))
35 modprm1div 16739 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1)))
3634, 35syl 17 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1)))
37 prmnn 16618 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3837adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ ℕ)
39 2z 12598 . . . . . . . . . . . . 13 2 ∈ ℤ
4039a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ∈ ℤ)
4113necomd 2990 . . . . . . . . . . . . . 14 𝑃 = 2 → 2 ≠ 𝑃)
4241adantl 481 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ≠ 𝑃)
43 2prm 16636 . . . . . . . . . . . . . . . . 17 2 ∈ ℙ
4443a1i 11 . . . . . . . . . . . . . . . 16 𝑃 = 2 → 2 ∈ ℙ)
4544anim2i 616 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 2 ∈ ℙ))
4645ancomd 461 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
47 prmrp 16656 . . . . . . . . . . . . . 14 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4846, 47syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4942, 48mpbird 257 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2 gcd 𝑃) = 1)
5038, 40, 493jca 1125 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
5150, 28jca 511 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
5251ex 412 . . . . . . . . 9 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0)))
53523ad2ant2 1131 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0)))
5453impcom 407 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
55 odzdvds 16737 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) ↔ ((od𝑃)‘2) ∥ ((𝑃 − 1) / 2)))
5654, 55syl 17 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) ↔ ((od𝑃)‘2) ∥ ((𝑃 − 1) / 2)))
57 eluz2nn 12872 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
58573ad2ant1 1130 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ ℕ)
5958adantl 481 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ)
60 fmtnoprmfac1lem 46809 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
6159, 19, 20, 60syl3anc 1368 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
62 breq1 5144 . . . . . . . . . 10 (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) ↔ (2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2)))
6362adantl 481 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) ↔ (2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2)))
6424a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
65 peano2nn 12228 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
6657, 65syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 12536 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
6864, 67nnexpcld 14213 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
69 nndivides 16214 . . . . . . . . . . . . . . 15 (((2↑(𝑁 + 1)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2)))
7068, 27, 69syl2an 595 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2)))
71 eqcom 2733 . . . . . . . . . . . . . . . . . . 19 ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))))
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1)))))
7337nncnd 12232 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
74 peano2cnm 11530 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℂ)
7675adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (𝑃 − 1) ∈ ℂ)
7776adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑃 − 1) ∈ ℂ)
78 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7968ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℕ)
8078, 79nnmulcld 12269 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℕ)
8180nncnd 12232 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ)
82 2cnne0 12426 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℂ ∧ 2 ≠ 0)
8382a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2 ∈ ℂ ∧ 2 ≠ 0))
84 divmul3 11881 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) ∈ ℂ ∧ (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))) ↔ (𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2)))
8577, 81, 83, 84syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))) ↔ (𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2)))
86 nncn 12224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
8786adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
8868nncnd 12232 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
8988ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
90 2cnd 12294 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
9187, 89, 90mulassd 11241 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) · 2) = (𝑘 · ((2↑(𝑁 + 1)) · 2)))
92 2cnd 12294 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 2 ∈ ℂ)
9365nnnn0d 12536 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
9492, 93expp1d 14117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
95 nncn 12224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
96 add1p1 12467 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
9795, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
9897oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (2↑((𝑁 + 1) + 1)) = (2↑(𝑁 + 2)))
9994, 98eqtr3d 2768 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
10057, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
101100ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
102101oveq2d 7421 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · ((2↑(𝑁 + 1)) · 2)) = (𝑘 · (2↑(𝑁 + 2))))
10391, 102eqtrd 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) · 2) = (𝑘 · (2↑(𝑁 + 2))))
104103eqeq2d 2737 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 2)))))
10573adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ)
106105adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℂ)
107 1cnd 11213 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
108 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
10924a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 2 ∈ ℕ)
110108, 109nnaddcld 12268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
111110nnnn0d 12536 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ0)
11257, 111syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
11364, 112nnexpcld 14213 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ)
114113nncnd 12232 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
115114ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 2)) ∈ ℂ)
11687, 115mulcld 11238 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 2))) ∈ ℂ)
117106, 107, 116subadd2d 11594 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 2))) ↔ ((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃))
118 eqcom 2733 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
119118a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
120104, 117, 1193bitrd 305 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12172, 85, 1203bitrd 305 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
122121rexbidva 3170 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
123122biimpd 228 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
124123adantrr 714 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12570, 124sylbid 239 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
126125expr 456 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 = 2 → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
1271263adant3 1129 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
128127impcom 407 . . . . . . . . . 10 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
129128adantr 480 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13063, 129sylbid 239 . . . . . . . 8 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
131130ex 412 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
13261, 131mpd 15 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13356, 132sylbid 239 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13436, 133sylbid 239 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13522, 134mpd 15 . . 3 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
136135ex 412 . 2 𝑃 = 2 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13711, 136pm2.61i 182 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wrex 3064  cdif 3940  {csn 4623   class class class wbr 5141  cfv 6537  (class class class)co 7405  cc 11110  0cc0 11112  1c1 11113   + caddc 11115   · cmul 11117  cmin 11448   / cdiv 11875  cn 12216  2c2 12271  0cn0 12476  cz 12562  cuz 12826   mod cmo 13840  cexp 14032  cdvds 16204   gcd cgcd 16442  cprime 16615  odcodz 16705  FermatNocfmtno 46772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-q 12937  df-rp 12981  df-ioo 13334  df-ico 13336  df-fz 13491  df-fzo 13634  df-fl 13763  df-mod 13841  df-seq 13973  df-exp 14033  df-fac 14239  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-prod 15856  df-dvds 16205  df-gcd 16443  df-prm 16616  df-odz 16707  df-phi 16708  df-pc 16779  df-lgs 27183  df-fmtno 46773
This theorem is referenced by:  fmtnofac2  46814  fmtno4prmfac  46817
  Copyright terms: Public domain W3C validator