MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfpmmulgsum Structured version   Visualization version   GIF version

Theorem chfacfpmmulgsum 22753
Description: Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐡 = (Baseβ€˜π΄)
cayhamlem1.p 𝑃 = (Poly1β€˜π‘…)
cayhamlem1.y π‘Œ = (𝑁 Mat 𝑃)
cayhamlem1.r Γ— = (.rβ€˜π‘Œ)
cayhamlem1.s βˆ’ = (-gβ€˜π‘Œ)
cayhamlem1.0 0 = (0gβ€˜π‘Œ)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
cayhamlem1.e ↑ = (.gβ€˜(mulGrpβ€˜π‘Œ))
chfacfpmmulgsum.p + = (+gβ€˜π‘Œ)
Assertion
Ref Expression
chfacfpmmulgsum (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
Distinct variable groups:   𝐡,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,π‘Œ   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐡,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   Γ— ,𝑖   ↑ ,𝑖   𝑖,𝑠   𝑖,𝑏   𝑇,𝑛,𝑖   𝑖,π‘Œ   Γ— ,𝑛   βˆ’ ,𝑛
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐡(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   + (𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   Γ— (𝑠,𝑏)   ↑ (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   βˆ’ (𝑖,𝑠,𝑏)   𝑁(𝑠,𝑏)   π‘Œ(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem chfacfpmmulgsum
StepHypRef Expression
1 eqid 2727 . . 3 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
2 cayhamlem1.0 . . 3 0 = (0gβ€˜π‘Œ)
3 chfacfpmmulgsum.p . . 3 + = (+gβ€˜π‘Œ)
4 crngring 20176 . . . . . . . 8 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
54anim2i 616 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
653adant3 1130 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7 cayhamlem1.p . . . . . . 7 𝑃 = (Poly1β€˜π‘…)
8 cayhamlem1.y . . . . . . 7 π‘Œ = (𝑁 Mat 𝑃)
97, 8pmatring 22581 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ π‘Œ ∈ Ring)
106, 9syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Ring)
11 ringcmn 20207 . . . . 5 (π‘Œ ∈ Ring β†’ π‘Œ ∈ CMnd)
1210, 11syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ CMnd)
1312adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ CMnd)
14 nn0ex 12500 . . . 4 β„•0 ∈ V
1514a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ β„•0 ∈ V)
16 simpll 766 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡))
17 simplr 768 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))))
18 simpr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ 𝑖 ∈ β„•0)
1916, 17, 183jca 1126 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ β„•0))
20 cayhamlem1.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21 cayhamlem1.b . . . . 5 𝐡 = (Baseβ€˜π΄)
22 cayhamlem1.r . . . . 5 Γ— = (.rβ€˜π‘Œ)
23 cayhamlem1.s . . . . 5 βˆ’ = (-gβ€˜π‘Œ)
24 cayhamlem1.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 cayhamlem1.g . . . . 5 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
26 cayhamlem1.e . . . . 5 ↑ = (.gβ€˜(mulGrpβ€˜π‘Œ))
2720, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulcl 22750 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ β„•0) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
2819, 27syl 17 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
2920, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulfsupp 22752 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))) finSupp 0 )
30 nn0disj 13641 . . . 4 ((0...(𝑠 + 1)) ∩ (β„€β‰₯β€˜((𝑠 + 1) + 1))) = βˆ…
3130a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0...(𝑠 + 1)) ∩ (β„€β‰₯β€˜((𝑠 + 1) + 1))) = βˆ…)
32 nnnn0 12501 . . . . . 6 (𝑠 ∈ β„• β†’ 𝑠 ∈ β„•0)
33 peano2nn0 12534 . . . . . 6 (𝑠 ∈ β„•0 β†’ (𝑠 + 1) ∈ β„•0)
3432, 33syl 17 . . . . 5 (𝑠 ∈ β„• β†’ (𝑠 + 1) ∈ β„•0)
35 nn0split 13640 . . . . 5 ((𝑠 + 1) ∈ β„•0 β†’ β„•0 = ((0...(𝑠 + 1)) βˆͺ (β„€β‰₯β€˜((𝑠 + 1) + 1))))
3634, 35syl 17 . . . 4 (𝑠 ∈ β„• β†’ β„•0 = ((0...(𝑠 + 1)) βˆͺ (β„€β‰₯β€˜((𝑠 + 1) + 1))))
3736ad2antrl 727 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ β„•0 = ((0...(𝑠 + 1)) βˆͺ (β„€β‰₯β€˜((𝑠 + 1) + 1))))
381, 2, 3, 13, 15, 28, 29, 31, 37gsumsplit2 19875 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))))
39 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡))
40 simplr 768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))))
41 nncn 12242 . . . . . . . . . . . . 13 (𝑠 ∈ β„• β†’ 𝑠 ∈ β„‚)
42 add1p1 12485 . . . . . . . . . . . . 13 (𝑠 ∈ β„‚ β†’ ((𝑠 + 1) + 1) = (𝑠 + 2))
4341, 42syl 17 . . . . . . . . . . . 12 (𝑠 ∈ β„• β†’ ((𝑠 + 1) + 1) = (𝑠 + 2))
4443ad2antrl 727 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((𝑠 + 1) + 1) = (𝑠 + 2))
4544fveq2d 6895 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (β„€β‰₯β€˜((𝑠 + 1) + 1)) = (β„€β‰₯β€˜(𝑠 + 2)))
4645eleq2d 2814 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↔ 𝑖 ∈ (β„€β‰₯β€˜(𝑠 + 2))))
4746biimpa 476 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ 𝑖 ∈ (β„€β‰₯β€˜(𝑠 + 2)))
4820, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmul0 22751 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ (β„€β‰₯β€˜(𝑠 + 2))) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = 0 )
4939, 40, 47, 48syl3anc 1369 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = 0 )
5049mpteq2dva 5242 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))) = (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 ))
5150oveq2d 7430 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 )))
524, 9sylan2 592 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ Ring)
53 ringmnd 20174 . . . . . . . . . 10 (π‘Œ ∈ Ring β†’ π‘Œ ∈ Mnd)
5452, 53syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ Mnd)
55543adant3 1130 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Mnd)
56 fvex 6904 . . . . . . . 8 (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V
5755, 56jctir 520 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (π‘Œ ∈ Mnd ∧ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V))
5857adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ ∈ Mnd ∧ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V))
592gsumz 18779 . . . . . 6 ((π‘Œ ∈ Mnd ∧ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6058, 59syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6151, 60eqtrd 2767 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = 0 )
6261oveq2d 7430 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + 0 ))
63 fzfid 13962 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (0...(𝑠 + 1)) ∈ Fin)
64 elfznn0 13618 . . . . . . . 8 (𝑖 ∈ (0...(𝑠 + 1)) β†’ 𝑖 ∈ β„•0)
6564, 19sylan2 592 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ β„•0))
6665, 27syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
6766ralrimiva 3141 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ βˆ€π‘– ∈ (0...(𝑠 + 1))((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
681, 13, 63, 67gsummptcl 19913 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ))
691, 3, 2mndrid 18706 . . . 4 ((π‘Œ ∈ Mnd ∧ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ)) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + 0 ) = (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))))
7055, 68, 69syl2an2r 684 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + 0 ) = (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))))
7162, 70eqtrd 2767 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))))
7232ad2antrl 727 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑠 ∈ β„•0)
731, 3, 13, 72, 66gsummptfzsplit 19878 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))))
74 elfznn0 13618 . . . . . . 7 (𝑖 ∈ (0...𝑠) β†’ 𝑖 ∈ β„•0)
7574, 28sylan2 592 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
761, 3, 13, 72, 75gsummptfzsplitl 19879 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))))
7755adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ Mnd)
78 0nn0 12509 . . . . . . . 8 0 ∈ β„•0
7978a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 0 ∈ β„•0)
8020, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulcl 22750 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 0 ∈ β„•0) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ))
8179, 80mpd3an3 1459 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ))
82 oveq1 7421 . . . . . . . . 9 (𝑖 = 0 β†’ (𝑖 ↑ (π‘‡β€˜π‘€)) = (0 ↑ (π‘‡β€˜π‘€)))
83 fveq2 6891 . . . . . . . . 9 (𝑖 = 0 β†’ (πΊβ€˜π‘–) = (πΊβ€˜0))
8482, 83oveq12d 7432 . . . . . . . 8 (𝑖 = 0 β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)))
851, 84gsumsn 19900 . . . . . . 7 ((π‘Œ ∈ Mnd ∧ 0 ∈ β„•0 ∧ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ)) β†’ (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)))
8677, 79, 81, 85syl3anc 1369 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)))
8786oveq2d 7430 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
8876, 87eqtrd 2767 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
89 ovexd 7449 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑠 + 1) ∈ V)
90 1nn0 12510 . . . . . . . 8 1 ∈ β„•0
9190a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 1 ∈ β„•0)
9272, 91nn0addcld 12558 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑠 + 1) ∈ β„•0)
9320, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulcl 22750 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ (𝑠 + 1) ∈ β„•0) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ))
9492, 93mpd3an3 1459 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ))
95 oveq1 7421 . . . . . . 7 (𝑖 = (𝑠 + 1) β†’ (𝑖 ↑ (π‘‡β€˜π‘€)) = ((𝑠 + 1) ↑ (π‘‡β€˜π‘€)))
96 fveq2 6891 . . . . . . 7 (𝑖 = (𝑠 + 1) β†’ (πΊβ€˜π‘–) = (πΊβ€˜(𝑠 + 1)))
9795, 96oveq12d 7432 . . . . . 6 (𝑖 = (𝑠 + 1) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))
981, 97gsumsn 19900 . . . . 5 ((π‘Œ ∈ Mnd ∧ (𝑠 + 1) ∈ V ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ)) β†’ (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))
9977, 89, 94, 98syl3anc 1369 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))
10088, 99oveq12d 7432 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))))
101 fzfid 13962 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (1...𝑠) ∈ Fin)
102 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡))
103 simplr 768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))))
104 elfznn 13554 . . . . . . . . . 10 (𝑖 ∈ (1...𝑠) β†’ 𝑖 ∈ β„•)
105104nnnn0d 12554 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) β†’ 𝑖 ∈ β„•0)
106105adantl 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ 𝑖 ∈ β„•0)
107102, 103, 106, 27syl3anc 1369 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
108107ralrimiva 3141 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ βˆ€π‘– ∈ (1...𝑠)((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
1091, 13, 101, 108gsummptcl 19913 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ))
1101, 3mndass 18694 . . . . 5 ((π‘Œ ∈ Mnd ∧ ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ) ∧ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ) ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ))) β†’ (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))))
11177, 109, 81, 94, 110syl13anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))))
112104nnne0d 12284 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) β†’ 𝑖 β‰  0)
113112ad2antlr 726 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑖 β‰  0)
114 neeq1 2998 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 β†’ (𝑛 β‰  0 ↔ 𝑖 β‰  0))
115114adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑛 β‰  0 ↔ 𝑖 β‰  0))
116113, 115mpbird 257 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 β‰  0)
117 eqneqall 2946 . . . . . . . . . . . 12 (𝑛 = 0 β†’ (𝑛 β‰  0 β†’ 0 = (π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1)))))
118116, 117mpan9 506 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ 0 = (π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))))
119 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ 𝑛 = 𝑖)
120 eqeq1 2731 . . . . . . . . . . . . . . . . 17 (0 = 𝑛 β†’ (0 = 𝑖 ↔ 𝑛 = 𝑖))
121120eqcoms 2735 . . . . . . . . . . . . . . . 16 (𝑛 = 0 β†’ (0 = 𝑖 ↔ 𝑛 = 𝑖))
122121adantl 481 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ (0 = 𝑖 ↔ 𝑛 = 𝑖))
123119, 122mpbird 257 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ 0 = 𝑖)
124123fveq2d 6895 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ (π‘β€˜0) = (π‘β€˜π‘–))
125124fveq2d 6895 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ (π‘‡β€˜(π‘β€˜0)) = (π‘‡β€˜(π‘β€˜π‘–)))
126125oveq2d 7430 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) = ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))
127118, 126oveq12d 7432 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
128 elfz2 13515 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) ↔ ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)))
129 zleltp1 12635 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ β„€ ∧ 𝑠 ∈ β„€) β†’ (𝑖 ≀ 𝑠 ↔ 𝑖 < (𝑠 + 1)))
130129ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ≀ 𝑠 ↔ 𝑖 < (𝑠 + 1)))
1311303adant1 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ≀ 𝑠 ↔ 𝑖 < (𝑠 + 1)))
132131biimpcd 248 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ≀ 𝑠 β†’ ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ 𝑖 < (𝑠 + 1)))
133132adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠) β†’ ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ 𝑖 < (𝑠 + 1)))
134133impcom 407 . . . . . . . . . . . . . . . . . . . 20 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ 𝑖 < (𝑠 + 1))
135134orcd 872 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖))
136 zre 12584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ β„€ β†’ 𝑠 ∈ ℝ)
137 1red 11237 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ β„€ β†’ 1 ∈ ℝ)
138136, 137readdcld 11265 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ β„€ β†’ (𝑠 + 1) ∈ ℝ)
139 zre 12584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ β„€ β†’ 𝑖 ∈ ℝ)
140138, 139anim12ci 613 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
1411403adant1 1128 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
142 lttri2 11318 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) β†’ (𝑖 β‰  (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 β‰  (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
144143adantr 480 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ (𝑖 β‰  (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
145135, 144mpbird 257 . . . . . . . . . . . . . . . . . 18 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ 𝑖 β‰  (𝑠 + 1))
146128, 145sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑠) β†’ 𝑖 β‰  (𝑠 + 1))
147146ad2antlr 726 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑖 β‰  (𝑠 + 1))
148 neeq1 2998 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 β†’ (𝑛 β‰  (𝑠 + 1) ↔ 𝑖 β‰  (𝑠 + 1)))
149148adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑛 β‰  (𝑠 + 1) ↔ 𝑖 β‰  (𝑠 + 1)))
150147, 149mpbird 257 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 β‰  (𝑠 + 1))
151150adantr 480 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ 𝑛 β‰  (𝑠 + 1))
152151neneqd 2940 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ Β¬ 𝑛 = (𝑠 + 1))
153152pm2.21d 121 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ (𝑛 = (𝑠 + 1) β†’ (π‘‡β€˜(π‘β€˜π‘ )) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
154153imp 406 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) β†’ (π‘‡β€˜(π‘β€˜π‘ )) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
155104nnred 12249 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...𝑠) β†’ 𝑖 ∈ ℝ)
156 eleq1w 2811 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 β†’ (𝑛 ∈ ℝ ↔ 𝑖 ∈ ℝ))
157155, 156syl5ibrcom 246 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) β†’ (𝑛 = 𝑖 β†’ 𝑛 ∈ ℝ))
158157adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (𝑛 = 𝑖 β†’ 𝑛 ∈ ℝ))
159158imp 406 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 ∈ ℝ)
16072nn0red 12555 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑠 ∈ ℝ)
161160ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑠 ∈ ℝ)
162 1red 11237 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 1 ∈ ℝ)
163161, 162readdcld 11265 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑠 + 1) ∈ ℝ)
164128, 134sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) β†’ 𝑖 < (𝑠 + 1))
165164ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑖 < (𝑠 + 1))
166 breq1 5145 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 β†’ (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
167166adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
168165, 167mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 < (𝑠 + 1))
169159, 163, 168ltnsymd 11385 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ Β¬ (𝑠 + 1) < 𝑛)
170169pm2.21d 121 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ ((𝑠 + 1) < 𝑛 β†’ 0 = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
171170ad2antrr 725 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) β†’ ((𝑠 + 1) < 𝑛 β†’ 0 = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
172171imp 406 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) β†’ 0 = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
173 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ 𝑛 = 𝑖)
174173fvoveq1d 7436 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘β€˜(𝑛 βˆ’ 1)) = (π‘β€˜(𝑖 βˆ’ 1)))
175174fveq2d 6895 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) = (π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))))
176173fveq2d 6895 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘β€˜π‘›) = (π‘β€˜π‘–))
177176fveq2d 6895 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘‡β€˜(π‘β€˜π‘›)) = (π‘‡β€˜(π‘β€˜π‘–)))
178177oveq2d 7430 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))) = ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))
179175, 178oveq12d 7432 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
180172, 179ifeqda 4560 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) β†’ if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
181154, 180ifeqda 4560 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
182127, 181ifeqda 4560 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
183 ovexd 7449 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))) ∈ V)
18425, 182, 106, 183fvmptd2 7007 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (πΊβ€˜π‘–) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
185184oveq2d 7430 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
186185mpteq2dva 5242 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))))
187186oveq2d 7430 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))))
188 nn0p1gt0 12523 . . . . . . . . . . . . . 14 (𝑠 ∈ β„•0 β†’ 0 < (𝑠 + 1))
189 0red 11239 . . . . . . . . . . . . . . . 16 (𝑠 ∈ β„•0 β†’ 0 ∈ ℝ)
190 ltne 11333 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (𝑠 + 1)) β†’ (𝑠 + 1) β‰  0)
191189, 190sylan 579 . . . . . . . . . . . . . . 15 ((𝑠 ∈ β„•0 ∧ 0 < (𝑠 + 1)) β†’ (𝑠 + 1) β‰  0)
192 neeq1 2998 . . . . . . . . . . . . . . 15 (𝑛 = (𝑠 + 1) β†’ (𝑛 β‰  0 ↔ (𝑠 + 1) β‰  0))
193191, 192syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑠 ∈ β„•0 ∧ 0 < (𝑠 + 1)) β†’ (𝑛 = (𝑠 + 1) β†’ 𝑛 β‰  0))
19432, 188, 193syl2anc2 584 . . . . . . . . . . . . 13 (𝑠 ∈ β„• β†’ (𝑛 = (𝑠 + 1) β†’ 𝑛 β‰  0))
195194ad2antrl 727 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑛 = (𝑠 + 1) β†’ 𝑛 β‰  0))
196195imp 406 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) β†’ 𝑛 β‰  0)
197 eqneqall 2946 . . . . . . . . . . 11 (𝑛 = 0 β†’ (𝑛 β‰  0 β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = (π‘‡β€˜(π‘β€˜π‘ ))))
198196, 197mpan9 506 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ 𝑛 = 0) β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = (π‘‡β€˜(π‘β€˜π‘ )))
199 iftrue 4530 . . . . . . . . . . 11 (𝑛 = (𝑠 + 1) β†’ if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))))) = (π‘‡β€˜(π‘β€˜π‘ )))
200199ad2antlr 726 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ Β¬ 𝑛 = 0) β†’ if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))))) = (π‘‡β€˜(π‘β€˜π‘ )))
201198, 200ifeqda 4560 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) β†’ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))) = (π‘‡β€˜(π‘β€˜π‘ )))
20272, 33syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑠 + 1) ∈ β„•0)
203 fvexd 6906 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘‡β€˜(π‘β€˜π‘ )) ∈ V)
20425, 201, 202, 203fvmptd2 7007 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (πΊβ€˜(𝑠 + 1)) = (π‘‡β€˜(π‘β€˜π‘ )))
205204oveq2d 7430 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))))
20624, 20, 21, 7, 8mat2pmatbas 22615 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ))
2074, 206syl3an2 1162 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ))
208 eqid 2727 . . . . . . . . . . . . . 14 (mulGrpβ€˜π‘Œ) = (mulGrpβ€˜π‘Œ)
209208, 1mgpbas 20071 . . . . . . . . . . . . 13 (Baseβ€˜π‘Œ) = (Baseβ€˜(mulGrpβ€˜π‘Œ))
210 eqid 2727 . . . . . . . . . . . . 13 (0gβ€˜(mulGrpβ€˜π‘Œ)) = (0gβ€˜(mulGrpβ€˜π‘Œ))
211209, 210, 26mulg0 19021 . . . . . . . . . . . 12 ((π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (0gβ€˜(mulGrpβ€˜π‘Œ)))
212207, 211syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (0gβ€˜(mulGrpβ€˜π‘Œ)))
213 eqid 2727 . . . . . . . . . . . 12 (1rβ€˜π‘Œ) = (1rβ€˜π‘Œ)
214208, 213ringidval 20114 . . . . . . . . . . 11 (1rβ€˜π‘Œ) = (0gβ€˜(mulGrpβ€˜π‘Œ))
215212, 214eqtr4di 2785 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (1rβ€˜π‘Œ))
216215adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (1rβ€˜π‘Œ))
217216oveq1d 7429 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) = ((1rβ€˜π‘Œ) Γ— (πΊβ€˜0)))
218523adant3 1130 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Ring)
21920, 21, 7, 8, 22, 23, 2, 24, 25chfacfisf 22743 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
2204, 219syl3anl2 1411 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
221220, 79ffvelcdmd 7089 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (πΊβ€˜0) ∈ (Baseβ€˜π‘Œ))
2221, 22, 213ringlidm 20194 . . . . . . . . 9 ((π‘Œ ∈ Ring ∧ (πΊβ€˜0) ∈ (Baseβ€˜π‘Œ)) β†’ ((1rβ€˜π‘Œ) Γ— (πΊβ€˜0)) = (πΊβ€˜0))
223218, 221, 222syl2an2r 684 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((1rβ€˜π‘Œ) Γ— (πΊβ€˜0)) = (πΊβ€˜0))
224 iftrue 4530 . . . . . . . . 9 (𝑛 = 0 β†’ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))) = ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
225 ovexd 7449 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) ∈ V)
22625, 224, 79, 225fvmptd3 7022 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (πΊβ€˜0) = ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
227217, 223, 2263eqtrd 2771 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) = ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
228205, 227oveq12d 7432 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) + ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
2291, 3cmncom 19744 . . . . . . 7 ((π‘Œ ∈ CMnd ∧ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ) ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ)) β†’ (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
23013, 81, 94, 229syl3anc 1369 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
231 ringgrp 20169 . . . . . . . . 9 (π‘Œ ∈ Ring β†’ π‘Œ ∈ Grp)
23210, 231syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Grp)
233232adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ Grp)
234205, 94eqeltrrd 2829 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) ∈ (Baseβ€˜π‘Œ))
23510adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ Ring)
236207adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ))
237 simpl1 1189 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑁 ∈ Fin)
23843ad2ant2 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑅 ∈ Ring)
239238adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑅 ∈ Ring)
240 elmapi 8859 . . . . . . . . . . . 12 (𝑏 ∈ (𝐡 ↑m (0...𝑠)) β†’ 𝑏:(0...𝑠)⟢𝐡)
241240adantl 481 . . . . . . . . . . 11 ((𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ 𝑏:(0...𝑠)⟢𝐡)
242241adantl 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑏:(0...𝑠)⟢𝐡)
243 0elfz 13622 . . . . . . . . . . . 12 (𝑠 ∈ β„•0 β†’ 0 ∈ (0...𝑠))
24432, 243syl 17 . . . . . . . . . . 11 (𝑠 ∈ β„• β†’ 0 ∈ (0...𝑠))
245244ad2antrl 727 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 0 ∈ (0...𝑠))
246242, 245ffvelcdmd 7089 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘β€˜0) ∈ 𝐡)
24724, 20, 21, 7, 8mat2pmatbas 22615 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (π‘β€˜0) ∈ 𝐡) β†’ (π‘‡β€˜(π‘β€˜0)) ∈ (Baseβ€˜π‘Œ))
248237, 239, 246, 247syl3anc 1369 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘‡β€˜(π‘β€˜0)) ∈ (Baseβ€˜π‘Œ))
2491, 22ringcl 20181 . . . . . . . 8 ((π‘Œ ∈ Ring ∧ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ) ∧ (π‘‡β€˜(π‘β€˜0)) ∈ (Baseβ€˜π‘Œ)) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) ∈ (Baseβ€˜π‘Œ))
250235, 236, 248, 249syl3anc 1369 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) ∈ (Baseβ€˜π‘Œ))
2511, 2, 23, 3grpsubadd0sub 18974 . . . . . . 7 ((π‘Œ ∈ Grp ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) ∈ (Baseβ€˜π‘Œ) ∧ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) ∈ (Baseβ€˜π‘Œ)) β†’ ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) + ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
252233, 234, 250, 251syl3anc 1369 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) + ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
253228, 230, 2523eqtr4d 2777 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
254187, 253oveq12d 7432 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
255111, 254eqtrd 2767 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
25673, 100, 2553eqtrd 2771 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
25738, 71, 2563eqtrd 2771 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 846   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  Vcvv 3469   βˆͺ cun 3942   ∩ cin 3943  βˆ…c0 4318  ifcif 4524  {csn 4624   class class class wbr 5142   ↦ cmpt 5225  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414   ↑m cmap 8836  Fincfn 8955  β„‚cc 11128  β„cr 11129  0cc0 11130  1c1 11131   + caddc 11133   < clt 11270   ≀ cle 11271   βˆ’ cmin 11466  β„•cn 12234  2c2 12289  β„•0cn0 12494  β„€cz 12580  β„€β‰₯cuz 12844  ...cfz 13508  Basecbs 17171  +gcplusg 17224  .rcmulr 17225  0gc0g 17412   Ξ£g cgsu 17413  Mndcmnd 18685  Grpcgrp 18881  -gcsg 18883  .gcmg 19014  CMndccmn 19726  mulGrpcmgp 20065  1rcur 20112  Ringcrg 20164  CRingccrg 20165  Poly1cpl1 22083   Mat cmat 22294   matToPolyMat cmat2pmat 22593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-rp 12999  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-ascl 21776  df-psr 21829  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-ply1 22088  df-mamu 22273  df-mat 22295  df-mat2pmat 22596
This theorem is referenced by:  chfacfpmmulgsum2  22754
  Copyright terms: Public domain W3C validator