MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfpmmulgsum Structured version   Visualization version   GIF version

Theorem chfacfpmmulgsum 22796
Description: Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐡 = (Baseβ€˜π΄)
cayhamlem1.p 𝑃 = (Poly1β€˜π‘…)
cayhamlem1.y π‘Œ = (𝑁 Mat 𝑃)
cayhamlem1.r Γ— = (.rβ€˜π‘Œ)
cayhamlem1.s βˆ’ = (-gβ€˜π‘Œ)
cayhamlem1.0 0 = (0gβ€˜π‘Œ)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
cayhamlem1.e ↑ = (.gβ€˜(mulGrpβ€˜π‘Œ))
chfacfpmmulgsum.p + = (+gβ€˜π‘Œ)
Assertion
Ref Expression
chfacfpmmulgsum (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
Distinct variable groups:   𝐡,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,π‘Œ   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐡,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   Γ— ,𝑖   ↑ ,𝑖   𝑖,𝑠   𝑖,𝑏   𝑇,𝑛,𝑖   𝑖,π‘Œ   Γ— ,𝑛   βˆ’ ,𝑛
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐡(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   + (𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   Γ— (𝑠,𝑏)   ↑ (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   βˆ’ (𝑖,𝑠,𝑏)   𝑁(𝑠,𝑏)   π‘Œ(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem chfacfpmmulgsum
StepHypRef Expression
1 eqid 2725 . . 3 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
2 cayhamlem1.0 . . 3 0 = (0gβ€˜π‘Œ)
3 chfacfpmmulgsum.p . . 3 + = (+gβ€˜π‘Œ)
4 crngring 20189 . . . . . . . 8 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
54anim2i 615 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
653adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7 cayhamlem1.p . . . . . . 7 𝑃 = (Poly1β€˜π‘…)
8 cayhamlem1.y . . . . . . 7 π‘Œ = (𝑁 Mat 𝑃)
97, 8pmatring 22624 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ π‘Œ ∈ Ring)
106, 9syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Ring)
11 ringcmn 20222 . . . . 5 (π‘Œ ∈ Ring β†’ π‘Œ ∈ CMnd)
1210, 11syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ CMnd)
1312adantr 479 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ CMnd)
14 nn0ex 12508 . . . 4 β„•0 ∈ V
1514a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ β„•0 ∈ V)
16 simpll 765 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡))
17 simplr 767 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))))
18 simpr 483 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ 𝑖 ∈ β„•0)
1916, 17, 183jca 1125 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ β„•0))
20 cayhamlem1.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21 cayhamlem1.b . . . . 5 𝐡 = (Baseβ€˜π΄)
22 cayhamlem1.r . . . . 5 Γ— = (.rβ€˜π‘Œ)
23 cayhamlem1.s . . . . 5 βˆ’ = (-gβ€˜π‘Œ)
24 cayhamlem1.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 cayhamlem1.g . . . . 5 𝐺 = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))))
26 cayhamlem1.e . . . . 5 ↑ = (.gβ€˜(mulGrpβ€˜π‘Œ))
2720, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulcl 22793 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ β„•0) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
2819, 27syl 17 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ β„•0) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
2920, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulfsupp 22795 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))) finSupp 0 )
30 nn0disj 13649 . . . 4 ((0...(𝑠 + 1)) ∩ (β„€β‰₯β€˜((𝑠 + 1) + 1))) = βˆ…
3130a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0...(𝑠 + 1)) ∩ (β„€β‰₯β€˜((𝑠 + 1) + 1))) = βˆ…)
32 nnnn0 12509 . . . . . 6 (𝑠 ∈ β„• β†’ 𝑠 ∈ β„•0)
33 peano2nn0 12542 . . . . . 6 (𝑠 ∈ β„•0 β†’ (𝑠 + 1) ∈ β„•0)
3432, 33syl 17 . . . . 5 (𝑠 ∈ β„• β†’ (𝑠 + 1) ∈ β„•0)
35 nn0split 13648 . . . . 5 ((𝑠 + 1) ∈ β„•0 β†’ β„•0 = ((0...(𝑠 + 1)) βˆͺ (β„€β‰₯β€˜((𝑠 + 1) + 1))))
3634, 35syl 17 . . . 4 (𝑠 ∈ β„• β†’ β„•0 = ((0...(𝑠 + 1)) βˆͺ (β„€β‰₯β€˜((𝑠 + 1) + 1))))
3736ad2antrl 726 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ β„•0 = ((0...(𝑠 + 1)) βˆͺ (β„€β‰₯β€˜((𝑠 + 1) + 1))))
381, 2, 3, 13, 15, 28, 29, 31, 37gsumsplit2 19888 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))))
39 simpll 765 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡))
40 simplr 767 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))))
41 nncn 12250 . . . . . . . . . . . . 13 (𝑠 ∈ β„• β†’ 𝑠 ∈ β„‚)
42 add1p1 12493 . . . . . . . . . . . . 13 (𝑠 ∈ β„‚ β†’ ((𝑠 + 1) + 1) = (𝑠 + 2))
4341, 42syl 17 . . . . . . . . . . . 12 (𝑠 ∈ β„• β†’ ((𝑠 + 1) + 1) = (𝑠 + 2))
4443ad2antrl 726 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((𝑠 + 1) + 1) = (𝑠 + 2))
4544fveq2d 6898 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (β„€β‰₯β€˜((𝑠 + 1) + 1)) = (β„€β‰₯β€˜(𝑠 + 2)))
4645eleq2d 2811 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↔ 𝑖 ∈ (β„€β‰₯β€˜(𝑠 + 2))))
4746biimpa 475 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ 𝑖 ∈ (β„€β‰₯β€˜(𝑠 + 2)))
4820, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmul0 22794 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ (β„€β‰₯β€˜(𝑠 + 2))) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = 0 )
4939, 40, 47, 48syl3anc 1368 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1))) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = 0 )
5049mpteq2dva 5248 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))) = (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 ))
5150oveq2d 7433 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 )))
524, 9sylan2 591 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ Ring)
53 ringmnd 20187 . . . . . . . . . 10 (π‘Œ ∈ Ring β†’ π‘Œ ∈ Mnd)
5452, 53syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ Mnd)
55543adant3 1129 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Mnd)
56 fvex 6907 . . . . . . . 8 (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V
5755, 56jctir 519 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (π‘Œ ∈ Mnd ∧ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V))
5857adantr 479 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ ∈ Mnd ∧ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V))
592gsumz 18792 . . . . . 6 ((π‘Œ ∈ Mnd ∧ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ∈ V) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6058, 59syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6151, 60eqtrd 2765 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = 0 )
6261oveq2d 7433 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + 0 ))
63 fzfid 13970 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (0...(𝑠 + 1)) ∈ Fin)
64 elfznn0 13626 . . . . . . . 8 (𝑖 ∈ (0...(𝑠 + 1)) β†’ 𝑖 ∈ β„•0)
6564, 19sylan2 591 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ β„•0))
6665, 27syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
6766ralrimiva 3136 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ βˆ€π‘– ∈ (0...(𝑠 + 1))((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
681, 13, 63, 67gsummptcl 19926 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ))
691, 3, 2mndrid 18714 . . . 4 ((π‘Œ ∈ Mnd ∧ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ)) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + 0 ) = (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))))
7055, 68, 69syl2an2r 683 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + 0 ) = (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))))
7162, 70eqtrd 2765 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ (β„€β‰₯β€˜((𝑠 + 1) + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))))
7232ad2antrl 726 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑠 ∈ β„•0)
731, 3, 13, 72, 66gsummptfzsplit 19891 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))))
74 elfznn0 13626 . . . . . . 7 (𝑖 ∈ (0...𝑠) β†’ 𝑖 ∈ β„•0)
7574, 28sylan2 591 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
761, 3, 13, 72, 75gsummptfzsplitl 19892 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))))
7755adantr 479 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ Mnd)
78 0nn0 12517 . . . . . . . 8 0 ∈ β„•0
7978a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 0 ∈ β„•0)
8020, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulcl 22793 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 0 ∈ β„•0) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ))
8179, 80mpd3an3 1458 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ))
82 oveq1 7424 . . . . . . . . 9 (𝑖 = 0 β†’ (𝑖 ↑ (π‘‡β€˜π‘€)) = (0 ↑ (π‘‡β€˜π‘€)))
83 fveq2 6894 . . . . . . . . 9 (𝑖 = 0 β†’ (πΊβ€˜π‘–) = (πΊβ€˜0))
8482, 83oveq12d 7435 . . . . . . . 8 (𝑖 = 0 β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)))
851, 84gsumsn 19913 . . . . . . 7 ((π‘Œ ∈ Mnd ∧ 0 ∈ β„•0 ∧ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ)) β†’ (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)))
8677, 79, 81, 85syl3anc 1368 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)))
8786oveq2d 7433 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {0} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
8876, 87eqtrd 2765 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
89 ovexd 7452 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑠 + 1) ∈ V)
90 1nn0 12518 . . . . . . . 8 1 ∈ β„•0
9190a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 1 ∈ β„•0)
9272, 91nn0addcld 12566 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑠 + 1) ∈ β„•0)
9320, 21, 7, 8, 22, 23, 2, 24, 25, 26chfacfpmmulcl 22793 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ (𝑠 + 1) ∈ β„•0) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ))
9492, 93mpd3an3 1458 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ))
95 oveq1 7424 . . . . . . 7 (𝑖 = (𝑠 + 1) β†’ (𝑖 ↑ (π‘‡β€˜π‘€)) = ((𝑠 + 1) ↑ (π‘‡β€˜π‘€)))
96 fveq2 6894 . . . . . . 7 (𝑖 = (𝑠 + 1) β†’ (πΊβ€˜π‘–) = (πΊβ€˜(𝑠 + 1)))
9795, 96oveq12d 7435 . . . . . 6 (𝑖 = (𝑠 + 1) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))
981, 97gsumsn 19913 . . . . 5 ((π‘Œ ∈ Mnd ∧ (𝑠 + 1) ∈ V ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ)) β†’ (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))
9977, 89, 94, 98syl3anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))
10088, 99oveq12d 7435 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (π‘Œ Ξ£g (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))))) = (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))))
101 fzfid 13970 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (1...𝑠) ∈ Fin)
102 simpll 765 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡))
103 simplr 767 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))))
104 elfznn 13562 . . . . . . . . . 10 (𝑖 ∈ (1...𝑠) β†’ 𝑖 ∈ β„•)
105104nnnn0d 12562 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) β†’ 𝑖 ∈ β„•0)
106105adantl 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ 𝑖 ∈ β„•0)
107102, 103, 106, 27syl3anc 1368 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
108107ralrimiva 3136 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ βˆ€π‘– ∈ (1...𝑠)((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
1091, 13, 101, 108gsummptcl 19926 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ))
1101, 3mndass 18702 . . . . 5 ((π‘Œ ∈ Mnd ∧ ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) ∈ (Baseβ€˜π‘Œ) ∧ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ) ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ))) β†’ (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))))
11177, 109, 81, 94, 110syl13anc 1369 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))))
112104nnne0d 12292 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) β†’ 𝑖 β‰  0)
113112ad2antlr 725 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑖 β‰  0)
114 neeq1 2993 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 β†’ (𝑛 β‰  0 ↔ 𝑖 β‰  0))
115114adantl 480 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑛 β‰  0 ↔ 𝑖 β‰  0))
116113, 115mpbird 256 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 β‰  0)
117 eqneqall 2941 . . . . . . . . . . . 12 (𝑛 = 0 β†’ (𝑛 β‰  0 β†’ 0 = (π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1)))))
118116, 117mpan9 505 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ 0 = (π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))))
119 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ 𝑛 = 𝑖)
120 eqeq1 2729 . . . . . . . . . . . . . . . . 17 (0 = 𝑛 β†’ (0 = 𝑖 ↔ 𝑛 = 𝑖))
121120eqcoms 2733 . . . . . . . . . . . . . . . 16 (𝑛 = 0 β†’ (0 = 𝑖 ↔ 𝑛 = 𝑖))
122121adantl 480 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ (0 = 𝑖 ↔ 𝑛 = 𝑖))
123119, 122mpbird 256 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ 0 = 𝑖)
124123fveq2d 6898 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ (π‘β€˜0) = (π‘β€˜π‘–))
125124fveq2d 6898 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ (π‘‡β€˜(π‘β€˜0)) = (π‘‡β€˜(π‘β€˜π‘–)))
126125oveq2d 7433 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) = ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))
127118, 126oveq12d 7435 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
128 elfz2 13523 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) ↔ ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)))
129 zleltp1 12643 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ β„€ ∧ 𝑠 ∈ β„€) β†’ (𝑖 ≀ 𝑠 ↔ 𝑖 < (𝑠 + 1)))
130129ancoms 457 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ≀ 𝑠 ↔ 𝑖 < (𝑠 + 1)))
1311303adant1 1127 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ≀ 𝑠 ↔ 𝑖 < (𝑠 + 1)))
132131biimpcd 248 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ≀ 𝑠 β†’ ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ 𝑖 < (𝑠 + 1)))
133132adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠) β†’ ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ 𝑖 < (𝑠 + 1)))
134133impcom 406 . . . . . . . . . . . . . . . . . . . 20 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ 𝑖 < (𝑠 + 1))
135134orcd 871 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖))
136 zre 12592 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ β„€ β†’ 𝑠 ∈ ℝ)
137 1red 11245 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ β„€ β†’ 1 ∈ ℝ)
138136, 137readdcld 11273 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ β„€ β†’ (𝑠 + 1) ∈ ℝ)
139 zre 12592 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ β„€ β†’ 𝑖 ∈ ℝ)
140138, 139anim12ci 612 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
1411403adant1 1127 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
142 lttri2 11326 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) β†’ (𝑖 β‰  (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) β†’ (𝑖 β‰  (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
144143adantr 479 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ (𝑖 β‰  (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
145135, 144mpbird 256 . . . . . . . . . . . . . . . . . 18 (((1 ∈ β„€ ∧ 𝑠 ∈ β„€ ∧ 𝑖 ∈ β„€) ∧ (1 ≀ 𝑖 ∧ 𝑖 ≀ 𝑠)) β†’ 𝑖 β‰  (𝑠 + 1))
146128, 145sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑠) β†’ 𝑖 β‰  (𝑠 + 1))
147146ad2antlr 725 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑖 β‰  (𝑠 + 1))
148 neeq1 2993 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 β†’ (𝑛 β‰  (𝑠 + 1) ↔ 𝑖 β‰  (𝑠 + 1)))
149148adantl 480 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑛 β‰  (𝑠 + 1) ↔ 𝑖 β‰  (𝑠 + 1)))
150147, 149mpbird 256 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 β‰  (𝑠 + 1))
151150adantr 479 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ 𝑛 β‰  (𝑠 + 1))
152151neneqd 2935 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ Β¬ 𝑛 = (𝑠 + 1))
153152pm2.21d 121 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ (𝑛 = (𝑠 + 1) β†’ (π‘‡β€˜(π‘β€˜π‘ )) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
154153imp 405 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) β†’ (π‘‡β€˜(π‘β€˜π‘ )) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
155104nnred 12257 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...𝑠) β†’ 𝑖 ∈ ℝ)
156 eleq1w 2808 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 β†’ (𝑛 ∈ ℝ ↔ 𝑖 ∈ ℝ))
157155, 156syl5ibrcom 246 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) β†’ (𝑛 = 𝑖 β†’ 𝑛 ∈ ℝ))
158157adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (𝑛 = 𝑖 β†’ 𝑛 ∈ ℝ))
159158imp 405 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 ∈ ℝ)
16072nn0red 12563 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑠 ∈ ℝ)
161160ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑠 ∈ ℝ)
162 1red 11245 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 1 ∈ ℝ)
163161, 162readdcld 11273 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑠 + 1) ∈ ℝ)
164128, 134sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) β†’ 𝑖 < (𝑠 + 1))
165164ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑖 < (𝑠 + 1))
166 breq1 5151 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 β†’ (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
167166adantl 480 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
168165, 167mpbird 256 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ 𝑛 < (𝑠 + 1))
169159, 163, 168ltnsymd 11393 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ Β¬ (𝑠 + 1) < 𝑛)
170169pm2.21d 121 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ ((𝑠 + 1) < 𝑛 β†’ 0 = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
171170ad2antrr 724 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) β†’ ((𝑠 + 1) < 𝑛 β†’ 0 = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
172171imp 405 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) β†’ 0 = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
173 simp-4r 782 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ 𝑛 = 𝑖)
174173fvoveq1d 7439 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘β€˜(𝑛 βˆ’ 1)) = (π‘β€˜(𝑖 βˆ’ 1)))
175174fveq2d 6898 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) = (π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))))
176173fveq2d 6898 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘β€˜π‘›) = (π‘β€˜π‘–))
177176fveq2d 6898 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ (π‘‡β€˜(π‘β€˜π‘›)) = (π‘‡β€˜(π‘β€˜π‘–)))
178177oveq2d 7433 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))) = ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))
179175, 178oveq12d 7435 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) ∧ Β¬ (𝑠 + 1) < 𝑛) β†’ ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
180172, 179ifeqda 4565 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) ∧ Β¬ 𝑛 = (𝑠 + 1)) β†’ if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
181154, 180ifeqda 4565 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ Β¬ 𝑛 = 0) β†’ if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
182127, 181ifeqda 4565 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) β†’ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
183 ovexd 7452 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))) ∈ V)
18425, 182, 106, 183fvmptd2 7010 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ (πΊβ€˜π‘–) = ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
185184oveq2d 7433 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) β†’ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)) = ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))
186185mpteq2dva 5248 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–)))))))
187186oveq2d 7433 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = (π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))))
188 nn0p1gt0 12531 . . . . . . . . . . . . . 14 (𝑠 ∈ β„•0 β†’ 0 < (𝑠 + 1))
189 0red 11247 . . . . . . . . . . . . . . . 16 (𝑠 ∈ β„•0 β†’ 0 ∈ ℝ)
190 ltne 11341 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (𝑠 + 1)) β†’ (𝑠 + 1) β‰  0)
191189, 190sylan 578 . . . . . . . . . . . . . . 15 ((𝑠 ∈ β„•0 ∧ 0 < (𝑠 + 1)) β†’ (𝑠 + 1) β‰  0)
192 neeq1 2993 . . . . . . . . . . . . . . 15 (𝑛 = (𝑠 + 1) β†’ (𝑛 β‰  0 ↔ (𝑠 + 1) β‰  0))
193191, 192syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑠 ∈ β„•0 ∧ 0 < (𝑠 + 1)) β†’ (𝑛 = (𝑠 + 1) β†’ 𝑛 β‰  0))
19432, 188, 193syl2anc2 583 . . . . . . . . . . . . 13 (𝑠 ∈ β„• β†’ (𝑛 = (𝑠 + 1) β†’ 𝑛 β‰  0))
195194ad2antrl 726 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑛 = (𝑠 + 1) β†’ 𝑛 β‰  0))
196195imp 405 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) β†’ 𝑛 β‰  0)
197 eqneqall 2941 . . . . . . . . . . 11 (𝑛 = 0 β†’ (𝑛 β‰  0 β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = (π‘‡β€˜(π‘β€˜π‘ ))))
198196, 197mpan9 505 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ 𝑛 = 0) β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = (π‘‡β€˜(π‘β€˜π‘ )))
199 iftrue 4535 . . . . . . . . . . 11 (𝑛 = (𝑠 + 1) β†’ if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))))) = (π‘‡β€˜(π‘β€˜π‘ )))
200199ad2antlr 725 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ Β¬ 𝑛 = 0) β†’ if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›)))))) = (π‘‡β€˜(π‘β€˜π‘ )))
201198, 200ifeqda 4565 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) β†’ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))) = (π‘‡β€˜(π‘β€˜π‘ )))
20272, 33syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑠 + 1) ∈ β„•0)
203 fvexd 6909 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘‡β€˜(π‘β€˜π‘ )) ∈ V)
20425, 201, 202, 203fvmptd2 7010 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (πΊβ€˜(𝑠 + 1)) = (π‘‡β€˜(π‘β€˜π‘ )))
205204oveq2d 7433 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) = (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))))
20624, 20, 21, 7, 8mat2pmatbas 22658 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ))
2074, 206syl3an2 1161 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ))
208 eqid 2725 . . . . . . . . . . . . . 14 (mulGrpβ€˜π‘Œ) = (mulGrpβ€˜π‘Œ)
209208, 1mgpbas 20084 . . . . . . . . . . . . 13 (Baseβ€˜π‘Œ) = (Baseβ€˜(mulGrpβ€˜π‘Œ))
210 eqid 2725 . . . . . . . . . . . . 13 (0gβ€˜(mulGrpβ€˜π‘Œ)) = (0gβ€˜(mulGrpβ€˜π‘Œ))
211209, 210, 26mulg0 19034 . . . . . . . . . . . 12 ((π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (0gβ€˜(mulGrpβ€˜π‘Œ)))
212207, 211syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (0gβ€˜(mulGrpβ€˜π‘Œ)))
213 eqid 2725 . . . . . . . . . . . 12 (1rβ€˜π‘Œ) = (1rβ€˜π‘Œ)
214208, 213ringidval 20127 . . . . . . . . . . 11 (1rβ€˜π‘Œ) = (0gβ€˜(mulGrpβ€˜π‘Œ))
215212, 214eqtr4di 2783 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (1rβ€˜π‘Œ))
216215adantr 479 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (0 ↑ (π‘‡β€˜π‘€)) = (1rβ€˜π‘Œ))
217216oveq1d 7432 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) = ((1rβ€˜π‘Œ) Γ— (πΊβ€˜0)))
218523adant3 1129 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Ring)
21920, 21, 7, 8, 22, 23, 2, 24, 25chfacfisf 22786 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
2204, 219syl3anl2 1410 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝐺:β„•0⟢(Baseβ€˜π‘Œ))
221220, 79ffvelcdmd 7092 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (πΊβ€˜0) ∈ (Baseβ€˜π‘Œ))
2221, 22, 213ringlidm 20209 . . . . . . . . 9 ((π‘Œ ∈ Ring ∧ (πΊβ€˜0) ∈ (Baseβ€˜π‘Œ)) β†’ ((1rβ€˜π‘Œ) Γ— (πΊβ€˜0)) = (πΊβ€˜0))
223218, 221, 222syl2an2r 683 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((1rβ€˜π‘Œ) Γ— (πΊβ€˜0)) = (πΊβ€˜0))
224 iftrue 4535 . . . . . . . . 9 (𝑛 = 0 β†’ if(𝑛 = 0, ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))), if(𝑛 = (𝑠 + 1), (π‘‡β€˜(π‘β€˜π‘ )), if((𝑠 + 1) < 𝑛, 0 , ((π‘‡β€˜(π‘β€˜(𝑛 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘›))))))) = ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
225 ovexd 7452 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) ∈ V)
22625, 224, 79, 225fvmptd3 7025 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (πΊβ€˜0) = ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
227217, 223, 2263eqtrd 2769 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) = ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
228205, 227oveq12d 7435 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) + ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
2291, 3cmncom 19757 . . . . . . 7 ((π‘Œ ∈ CMnd ∧ ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) ∈ (Baseβ€˜π‘Œ) ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) ∈ (Baseβ€˜π‘Œ)) β†’ (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
23013, 81, 94, 229syl3anc 1368 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))))
231 ringgrp 20182 . . . . . . . . 9 (π‘Œ ∈ Ring β†’ π‘Œ ∈ Grp)
23210, 231syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Grp)
233232adantr 479 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ Grp)
234205, 94eqeltrrd 2826 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) ∈ (Baseβ€˜π‘Œ))
23510adantr 479 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ Ring)
236207adantr 479 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ))
237 simpl1 1188 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑁 ∈ Fin)
23843ad2ant2 1131 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑅 ∈ Ring)
239238adantr 479 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑅 ∈ Ring)
240 elmapi 8866 . . . . . . . . . . . 12 (𝑏 ∈ (𝐡 ↑m (0...𝑠)) β†’ 𝑏:(0...𝑠)⟢𝐡)
241240adantl 480 . . . . . . . . . . 11 ((𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ 𝑏:(0...𝑠)⟢𝐡)
242241adantl 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑏:(0...𝑠)⟢𝐡)
243 0elfz 13630 . . . . . . . . . . . 12 (𝑠 ∈ β„•0 β†’ 0 ∈ (0...𝑠))
24432, 243syl 17 . . . . . . . . . . 11 (𝑠 ∈ β„• β†’ 0 ∈ (0...𝑠))
245244ad2antrl 726 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 0 ∈ (0...𝑠))
246242, 245ffvelcdmd 7092 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘β€˜0) ∈ 𝐡)
24724, 20, 21, 7, 8mat2pmatbas 22658 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (π‘β€˜0) ∈ 𝐡) β†’ (π‘‡β€˜(π‘β€˜0)) ∈ (Baseβ€˜π‘Œ))
248237, 239, 246, 247syl3anc 1368 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘‡β€˜(π‘β€˜0)) ∈ (Baseβ€˜π‘Œ))
2491, 22ringcl 20194 . . . . . . . 8 ((π‘Œ ∈ Ring ∧ (π‘‡β€˜π‘€) ∈ (Baseβ€˜π‘Œ) ∧ (π‘‡β€˜(π‘β€˜0)) ∈ (Baseβ€˜π‘Œ)) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) ∈ (Baseβ€˜π‘Œ))
250235, 236, 248, 249syl3anc 1368 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) ∈ (Baseβ€˜π‘Œ))
2511, 2, 23, 3grpsubadd0sub 18987 . . . . . . 7 ((π‘Œ ∈ Grp ∧ (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) ∈ (Baseβ€˜π‘Œ) ∧ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))) ∈ (Baseβ€˜π‘Œ)) β†’ ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) + ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
252233, 234, 250, 251syl3anc 1368 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) + ( 0 βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
253228, 230, 2523eqtr4d 2775 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0)))))
254187, 253oveq12d 7435 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + (((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0)) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1))))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
255111, 254eqtrd 2765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) + ((0 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜0))) + (((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜(𝑠 + 1)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
25673, 100, 2553eqtrd 2769 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
25738, 71, 2563eqtrd 2769 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„• ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ β„•0 ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— (πΊβ€˜π‘–)))) = ((π‘Œ Ξ£g (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (π‘‡β€˜π‘€)) Γ— ((π‘‡β€˜(π‘β€˜(𝑖 βˆ’ 1))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜π‘–))))))) + ((((𝑠 + 1) ↑ (π‘‡β€˜π‘€)) Γ— (π‘‡β€˜(π‘β€˜π‘ ))) βˆ’ ((π‘‡β€˜π‘€) Γ— (π‘‡β€˜(π‘β€˜0))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  Vcvv 3463   βˆͺ cun 3943   ∩ cin 3944  βˆ…c0 4323  ifcif 4529  {csn 4629   class class class wbr 5148   ↦ cmpt 5231  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417   ↑m cmap 8843  Fincfn 8962  β„‚cc 11136  β„cr 11137  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278   ≀ cle 11279   βˆ’ cmin 11474  β„•cn 12242  2c2 12297  β„•0cn0 12502  β„€cz 12588  β„€β‰₯cuz 12852  ...cfz 13516  Basecbs 17179  +gcplusg 17232  .rcmulr 17233  0gc0g 17420   Ξ£g cgsu 17421  Mndcmnd 18693  Grpcgrp 18894  -gcsg 18896  .gcmg 19027  CMndccmn 19739  mulGrpcmgp 20078  1rcur 20125  Ringcrg 20177  CRingccrg 20178  Poly1cpl1 22104   Mat cmat 22337   matToPolyMat cmat2pmat 22636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-ofr 7684  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-0g 17422  df-gsum 17423  df-prds 17428  df-pws 17430  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-grp 18897  df-minusg 18898  df-sbg 18899  df-mulg 19028  df-subg 19082  df-ghm 19172  df-cntz 19272  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-cring 20180  df-subrng 20487  df-subrg 20512  df-lmod 20749  df-lss 20820  df-sra 21062  df-rgmod 21063  df-dsmm 21670  df-frlm 21685  df-ascl 21793  df-psr 21846  df-mpl 21848  df-opsr 21850  df-psr1 22107  df-ply1 22109  df-mamu 22321  df-mat 22338  df-mat2pmat 22639
This theorem is referenced by:  chfacfpmmulgsum2  22797
  Copyright terms: Public domain W3C validator