Step | Hyp | Ref
| Expression |
1 | | cayhamlem1.0 |
. . . 4
⊢ 0 =
(0g‘𝑌) |
2 | 1 | fvexi 6770 |
. . 3
⊢ 0 ∈
V |
3 | 2 | a1i 11 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 0 ∈ V) |
4 | | ovexd 7290 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) ∈ V) |
5 | | nnnn0 12170 |
. . . . 5
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℕ0) |
6 | 5 | ad2antrl 724 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑠 ∈ ℕ0) |
7 | | 1nn0 12179 |
. . . . 5
⊢ 1 ∈
ℕ0 |
8 | 7 | a1i 11 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 1 ∈
ℕ0) |
9 | 6, 8 | nn0addcld 12227 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑠 + 1) ∈
ℕ0) |
10 | | vex 3426 |
. . . . . . 7
⊢ 𝑘 ∈ V |
11 | | csbov12g 7299 |
. . . . . . . 8
⊢ (𝑘 ∈ V →
⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = (⦋𝑘 / 𝑖⦌(𝑖 ↑ (𝑇‘𝑀)) × ⦋𝑘 / 𝑖⦌(𝐺‘𝑖))) |
12 | | nfcvd 2907 |
. . . . . . . . . 10
⊢ (𝑘 ∈ V →
Ⅎ𝑖(𝑘 ↑ (𝑇‘𝑀))) |
13 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → (𝑖 ↑ (𝑇‘𝑀)) = (𝑘 ↑ (𝑇‘𝑀))) |
14 | 12, 13 | csbiegf 3862 |
. . . . . . . . 9
⊢ (𝑘 ∈ V →
⦋𝑘 / 𝑖⦌(𝑖 ↑ (𝑇‘𝑀)) = (𝑘 ↑ (𝑇‘𝑀))) |
15 | | csbfv 6801 |
. . . . . . . . . 10
⊢
⦋𝑘 /
𝑖⦌(𝐺‘𝑖) = (𝐺‘𝑘) |
16 | 15 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ V →
⦋𝑘 / 𝑖⦌(𝐺‘𝑖) = (𝐺‘𝑘)) |
17 | 14, 16 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑘 ∈ V →
(⦋𝑘 / 𝑖⦌(𝑖 ↑ (𝑇‘𝑀)) × ⦋𝑘 / 𝑖⦌(𝐺‘𝑖)) = ((𝑘 ↑ (𝑇‘𝑀)) × (𝐺‘𝑘))) |
18 | 11, 17 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑘 ∈ V →
⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = ((𝑘 ↑ (𝑇‘𝑀)) × (𝐺‘𝑘))) |
19 | 10, 18 | mp1i 13 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = ((𝑘 ↑ (𝑇‘𝑀)) × (𝐺‘𝑘))) |
20 | | simplll 771 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵)) |
21 | | simpllr 772 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) |
22 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑠 ∈ ℕ0) |
23 | 22 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → 𝑠 ∈
ℕ0) |
24 | 23 | nn0zd 12353 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → 𝑠 ∈
ℤ) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑠 ∈ ℤ) |
26 | | 2z 12282 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
27 | 26 | a1i 11 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 2 ∈ ℤ) |
28 | 25, 27 | zaddcld 12359 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 + 2) ∈ ℤ) |
29 | | simplr 765 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ ℕ0) |
30 | 29 | nn0zd 12353 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ ℤ) |
31 | | peano2nn0 12203 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ℕ0
→ (𝑠 + 1) ∈
ℕ0) |
32 | 5, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (𝑠 + 1) ∈
ℕ0) |
33 | 32 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑠 + 1) ∈
ℕ0) |
34 | 33 | nn0zd 12353 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑠 + 1) ∈ ℤ) |
35 | | nn0z 12273 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
36 | | zltp1le 12300 |
. . . . . . . . . . 11
⊢ (((𝑠 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑠 + 1) < 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘)) |
37 | 34, 35, 36 | syl2an 595 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 1) < 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘)) |
38 | 37 | biimpa 476 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑠 + 1) + 1) ≤ 𝑘) |
39 | | nncn 11911 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℂ) |
40 | | add1p1 12154 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2)) |
42 | 41 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (((𝑠 + 1) + 1) ≤ 𝑘 ↔ (𝑠 + 2) ≤ 𝑘)) |
43 | 42 | bicomd 222 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘)) |
44 | 43 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘)) |
45 | 44 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘)) |
46 | 45 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘)) |
47 | 38, 46 | mpbird 256 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 + 2) ≤ 𝑘) |
48 | | eluz2 12517 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘(𝑠 + 2)) ↔ ((𝑠 + 2) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝑘)) |
49 | 28, 30, 47, 48 | syl3anbrc 1341 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ (ℤ≥‘(𝑠 + 2))) |
50 | | cayhamlem1.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
51 | | cayhamlem1.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
52 | | cayhamlem1.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
53 | | cayhamlem1.y |
. . . . . . . 8
⊢ 𝑌 = (𝑁 Mat 𝑃) |
54 | | cayhamlem1.r |
. . . . . . . 8
⊢ × =
(.r‘𝑌) |
55 | | cayhamlem1.s |
. . . . . . . 8
⊢ − =
(-g‘𝑌) |
56 | | cayhamlem1.t |
. . . . . . . 8
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
57 | | cayhamlem1.g |
. . . . . . . 8
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
58 | | cayhamlem1.e |
. . . . . . . 8
⊢ ↑ =
(.g‘(mulGrp‘𝑌)) |
59 | 50, 51, 52, 53, 54, 55, 1, 56, 57, 58 | chfacfpmmul0 21919 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑘 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝑘 ↑ (𝑇‘𝑀)) × (𝐺‘𝑘)) = 0 ) |
60 | 20, 21, 49, 59 | syl3anc 1369 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑘 ↑ (𝑇‘𝑀)) × (𝐺‘𝑘)) = 0 ) |
61 | 19, 60 | eqtrd 2778 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = 0 ) |
62 | 61 | ex 412 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 1) < 𝑘 → ⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = 0 )) |
63 | 62 | ralrimiva 3107 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∀𝑘 ∈ ℕ0 ((𝑠 + 1) < 𝑘 → ⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = 0 )) |
64 | | breq1 5073 |
. . . 4
⊢ (𝑥 = (𝑠 + 1) → (𝑥 < 𝑘 ↔ (𝑠 + 1) < 𝑘)) |
65 | 64 | rspceaimv 3557 |
. . 3
⊢ (((𝑠 + 1) ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 ((𝑠 +
1) < 𝑘 →
⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = 0 )) → ∃𝑥 ∈ ℕ0
∀𝑘 ∈
ℕ0 (𝑥 <
𝑘 →
⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = 0 )) |
66 | 9, 63, 65 | syl2anc 583 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∃𝑥 ∈ ℕ0 ∀𝑘 ∈ ℕ0
(𝑥 < 𝑘 → ⦋𝑘 / 𝑖⦌((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)) = 0 )) |
67 | 3, 4, 66 | mptnn0fsupp 13645 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖))) finSupp 0 ) |