Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfpmmulfsupp Structured version   Visualization version   GIF version

Theorem chfacfpmmulfsupp 21472
 Description: A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
chfacfpmmulfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖))) finSupp 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐵,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   × ,𝑖   ,𝑖   𝑖,𝑠   𝑖,𝑏
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑖,𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑖,𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem chfacfpmmulfsupp
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayhamlem1.0 . . . 4 0 = (0g𝑌)
21fvexi 6663 . . 3 0 ∈ V
32a1i 11 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ V)
4 ovexd 7174 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 (𝑇𝑀)) × (𝐺𝑖)) ∈ V)
5 nnnn0 11896 . . . . 5 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
65ad2antrl 727 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
7 1nn0 11905 . . . . 5 1 ∈ ℕ0
87a1i 11 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℕ0)
96, 8nn0addcld 11951 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
10 vex 3447 . . . . . . 7 𝑘 ∈ V
11 csbov12g 7183 . . . . . . . 8 (𝑘 ∈ V → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = (𝑘 / 𝑖(𝑖 (𝑇𝑀)) × 𝑘 / 𝑖(𝐺𝑖)))
12 nfcvd 2959 . . . . . . . . . 10 (𝑘 ∈ V → 𝑖(𝑘 (𝑇𝑀)))
13 oveq1 7146 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖 (𝑇𝑀)) = (𝑘 (𝑇𝑀)))
1412, 13csbiegf 3864 . . . . . . . . 9 (𝑘 ∈ V → 𝑘 / 𝑖(𝑖 (𝑇𝑀)) = (𝑘 (𝑇𝑀)))
15 csbfv 6694 . . . . . . . . . 10 𝑘 / 𝑖(𝐺𝑖) = (𝐺𝑘)
1615a1i 11 . . . . . . . . 9 (𝑘 ∈ V → 𝑘 / 𝑖(𝐺𝑖) = (𝐺𝑘))
1714, 16oveq12d 7157 . . . . . . . 8 (𝑘 ∈ V → (𝑘 / 𝑖(𝑖 (𝑇𝑀)) × 𝑘 / 𝑖(𝐺𝑖)) = ((𝑘 (𝑇𝑀)) × (𝐺𝑘)))
1811, 17eqtrd 2836 . . . . . . 7 (𝑘 ∈ V → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = ((𝑘 (𝑇𝑀)) × (𝐺𝑘)))
1910, 18mp1i 13 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = ((𝑘 (𝑇𝑀)) × (𝐺𝑘)))
20 simplll 774 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
21 simpllr 775 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
225adantr 484 . . . . . . . . . . . 12 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
2322ad2antlr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → 𝑠 ∈ ℕ0)
2423nn0zd 12077 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → 𝑠 ∈ ℤ)
2524adantr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑠 ∈ ℤ)
26 2z 12006 . . . . . . . . . 10 2 ∈ ℤ
2726a1i 11 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 2 ∈ ℤ)
2825, 27zaddcld 12083 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 + 2) ∈ ℤ)
29 simplr 768 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ ℕ0)
3029nn0zd 12077 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ ℤ)
31 peano2nn0 11929 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ0 → (𝑠 + 1) ∈ ℕ0)
325, 31syl 17 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ0)
3332ad2antrl 727 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
3433nn0zd 12077 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℤ)
35 nn0z 11997 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
36 zltp1le 12024 . . . . . . . . . . 11 (((𝑠 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑠 + 1) < 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
3734, 35, 36syl2an 598 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 1) < 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
3837biimpa 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑠 + 1) + 1) ≤ 𝑘)
39 nncn 11637 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
40 add1p1 11880 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4241breq1d 5043 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (((𝑠 + 1) + 1) ≤ 𝑘 ↔ (𝑠 + 2) ≤ 𝑘))
4342bicomd 226 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4443adantr 484 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4544ad2antlr 726 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4645adantr 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑠 + 2) ≤ 𝑘 ↔ ((𝑠 + 1) + 1) ≤ 𝑘))
4738, 46mpbird 260 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → (𝑠 + 2) ≤ 𝑘)
48 eluz2 12241 . . . . . . . 8 (𝑘 ∈ (ℤ‘(𝑠 + 2)) ↔ ((𝑠 + 2) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑠 + 2) ≤ 𝑘))
4928, 30, 47, 48syl3anbrc 1340 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 ∈ (ℤ‘(𝑠 + 2)))
50 cayhamlem1.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
51 cayhamlem1.b . . . . . . . 8 𝐵 = (Base‘𝐴)
52 cayhamlem1.p . . . . . . . 8 𝑃 = (Poly1𝑅)
53 cayhamlem1.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
54 cayhamlem1.r . . . . . . . 8 × = (.r𝑌)
55 cayhamlem1.s . . . . . . . 8 = (-g𝑌)
56 cayhamlem1.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
57 cayhamlem1.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
58 cayhamlem1.e . . . . . . . 8 = (.g‘(mulGrp‘𝑌))
5950, 51, 52, 53, 54, 55, 1, 56, 57, 58chfacfpmmul0 21471 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑘 ∈ (ℤ‘(𝑠 + 2))) → ((𝑘 (𝑇𝑀)) × (𝐺𝑘)) = 0 )
6020, 21, 49, 59syl3anc 1368 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → ((𝑘 (𝑇𝑀)) × (𝐺𝑘)) = 0 )
6119, 60eqtrd 2836 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) ∧ (𝑠 + 1) < 𝑘) → 𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 )
6261ex 416 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ ℕ0) → ((𝑠 + 1) < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
6362ralrimiva 3152 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑘 ∈ ℕ0 ((𝑠 + 1) < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
64 breq1 5036 . . . 4 (𝑥 = (𝑠 + 1) → (𝑥 < 𝑘 ↔ (𝑠 + 1) < 𝑘))
6564rspceaimv 3579 . . 3 (((𝑠 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 ((𝑠 + 1) < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 )) → ∃𝑥 ∈ ℕ0𝑘 ∈ ℕ0 (𝑥 < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
669, 63, 65syl2anc 587 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∃𝑥 ∈ ℕ0𝑘 ∈ ℕ0 (𝑥 < 𝑘𝑘 / 𝑖((𝑖 (𝑇𝑀)) × (𝐺𝑖)) = 0 ))
673, 4, 66mptnn0fsupp 13364 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖))) finSupp 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  Vcvv 3444  ⦋csb 3831  ifcif 4428   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139   ↑m cmap 8393  Fincfn 8496   finSupp cfsupp 8821  ℂcc 10528  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668   ≤ cle 10669   − cmin 10863  ℕcn 11629  2c2 11684  ℕ0cn0 11889  ℤcz 11973  ℤ≥cuz 12235  ...cfz 12889  Basecbs 16479  .rcmulr 16562  0gc0g 16709  -gcsg 18101  .gcmg 18220  mulGrpcmgp 19236  CRingccrg 19295  Poly1cpl1 20810   Mat cmat 21016   matToPolyMat cmat2pmat 21313 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-subrg 19530  df-lmod 19633  df-lss 19701  df-sra 19941  df-rgmod 19942  df-dsmm 20425  df-frlm 20440  df-ascl 20548  df-psr 20598  df-mpl 20600  df-opsr 20602  df-psr1 20813  df-ply1 20815  df-mamu 20995  df-mat 21017  df-mat2pmat 21316 This theorem is referenced by:  chfacfpmmulgsum  21473
 Copyright terms: Public domain W3C validator