Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac1 Structured version   Visualization version   GIF version

Theorem fmtnofac1 47584
Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result): "Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of Fn ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 47583. (Contributed by AV, 30-Jul-2021.)

Assertion
Ref Expression
fmtnofac1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12941 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 5prm 17128 . . . . . . 7 5 ∈ ℙ
3 dvdsprime 16706 . . . . . . 7 ((5 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
42, 3mpan 690 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
5 1nn0 12517 . . . . . . . . 9 1 ∈ ℕ0
65a1i 11 . . . . . . . 8 (𝑀 = 5 → 1 ∈ ℕ0)
7 simpl 482 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → 𝑀 = 5)
8 oveq1 7412 . . . . . . . . . . 11 (𝑘 = 1 → (𝑘 · 4) = (1 · 4))
98oveq1d 7420 . . . . . . . . . 10 (𝑘 = 1 → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
109adantl 481 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
117, 10eqeq12d 2751 . . . . . . . 8 ((𝑀 = 5 ∧ 𝑘 = 1) → (𝑀 = ((𝑘 · 4) + 1) ↔ 5 = ((1 · 4) + 1)))
12 df-5 12306 . . . . . . . . . 10 5 = (4 + 1)
13 4cn 12325 . . . . . . . . . . . . 13 4 ∈ ℂ
1413mullidi 11240 . . . . . . . . . . . 12 (1 · 4) = 4
1514eqcomi 2744 . . . . . . . . . . 11 4 = (1 · 4)
1615oveq1i 7415 . . . . . . . . . 10 (4 + 1) = ((1 · 4) + 1)
1712, 16eqtri 2758 . . . . . . . . 9 5 = ((1 · 4) + 1)
1817a1i 11 . . . . . . . 8 (𝑀 = 5 → 5 = ((1 · 4) + 1))
196, 11, 18rspcedvd 3603 . . . . . . 7 (𝑀 = 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
20 0nn0 12516 . . . . . . . . 9 0 ∈ ℕ0
2120a1i 11 . . . . . . . 8 (𝑀 = 1 → 0 ∈ ℕ0)
22 simpl 482 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → 𝑀 = 1)
23 oveq1 7412 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 · 4) = (0 · 4))
2423oveq1d 7420 . . . . . . . . . 10 (𝑘 = 0 → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2524adantl 481 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2622, 25eqeq12d 2751 . . . . . . . 8 ((𝑀 = 1 ∧ 𝑘 = 0) → (𝑀 = ((𝑘 · 4) + 1) ↔ 1 = ((0 · 4) + 1)))
2713mul02i 11424 . . . . . . . . . . . 12 (0 · 4) = 0
2827oveq1i 7415 . . . . . . . . . . 11 ((0 · 4) + 1) = (0 + 1)
29 0p1e1 12362 . . . . . . . . . . 11 (0 + 1) = 1
3028, 29eqtri 2758 . . . . . . . . . 10 ((0 · 4) + 1) = 1
3130eqcomi 2744 . . . . . . . . 9 1 = ((0 · 4) + 1)
3231a1i 11 . . . . . . . 8 (𝑀 = 1 → 1 = ((0 · 4) + 1))
3321, 26, 32rspcedvd 3603 . . . . . . 7 (𝑀 = 1 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
3419, 33jaoi 857 . . . . . 6 ((𝑀 = 5 ∨ 𝑀 = 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
354, 34biimtrdi 253 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
36 fveq2 6876 . . . . . . . 8 (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1))
37 fmtno1 47555 . . . . . . . 8 (FermatNo‘1) = 5
3836, 37eqtrdi 2786 . . . . . . 7 (𝑁 = 1 → (FermatNo‘𝑁) = 5)
3938breq2d 5131 . . . . . 6 (𝑁 = 1 → (𝑀 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ 5))
40 oveq1 7412 . . . . . . . . . . . . 13 (𝑁 = 1 → (𝑁 + 1) = (1 + 1))
41 1p1e2 12365 . . . . . . . . . . . . 13 (1 + 1) = 2
4240, 41eqtrdi 2786 . . . . . . . . . . . 12 (𝑁 = 1 → (𝑁 + 1) = 2)
4342oveq2d 7421 . . . . . . . . . . 11 (𝑁 = 1 → (2↑(𝑁 + 1)) = (2↑2))
44 sq2 14215 . . . . . . . . . . 11 (2↑2) = 4
4543, 44eqtrdi 2786 . . . . . . . . . 10 (𝑁 = 1 → (2↑(𝑁 + 1)) = 4)
4645oveq2d 7421 . . . . . . . . 9 (𝑁 = 1 → (𝑘 · (2↑(𝑁 + 1))) = (𝑘 · 4))
4746oveq1d 7420 . . . . . . . 8 (𝑁 = 1 → ((𝑘 · (2↑(𝑁 + 1))) + 1) = ((𝑘 · 4) + 1))
4847eqeq2d 2746 . . . . . . 7 (𝑁 = 1 → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ 𝑀 = ((𝑘 · 4) + 1)))
4948rexbidv 3164 . . . . . 6 (𝑁 = 1 → (∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
5039, 49imbi12d 344 . . . . 5 (𝑁 = 1 → ((𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) ↔ (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))))
5135, 50imbitrrid 246 . . . 4 (𝑁 = 1 → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
52 fmtnofac2 47583 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
53 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
54 2nn0 12518 . . . . . . . . . . . 12 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
5653, 55nn0mulcld 12567 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 · 2) ∈ ℕ0)
5756adantl 481 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 2) ∈ ℕ0)
5857adantr 480 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · 2) ∈ ℕ0)
59 simpr 484 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
60 oveq1 7412 . . . . . . . . . 10 (𝑘 = (𝑛 · 2) → (𝑘 · (2↑(𝑁 + 1))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
6160oveq1d 7420 . . . . . . . . 9 (𝑘 = (𝑛 · 2) → ((𝑘 · (2↑(𝑁 + 1))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
6259, 61eqeqan12d 2749 . . . . . . . 8 (((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) ∧ 𝑘 = (𝑛 · 2)) → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1)))
63 eluzge2nn0 12903 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6463nn0cnd 12564 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
65 add1p1 12492 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
6664, 65syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) + 1) = (𝑁 + 2))
6766eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6867oveq2d 7421 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2↑((𝑁 + 1) + 1)))
69 2cnd 12318 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
70 peano2nn0 12541 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7163, 70syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
7269, 71expp1d 14165 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
7354a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
7473, 71nn0expcld 14264 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
7574nn0cnd 12564 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
7675, 69mulcomd 11256 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2 · (2↑(𝑁 + 1))))
7768, 72, 763eqtrd 2774 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7877adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7978oveq2d 7421 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
80 nn0cn 12511 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
8180adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
82 2cnd 12318 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8375adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℂ)
8481, 82, 83mulassd 11258 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 · 2) · (2↑(𝑁 + 1))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
8579, 84eqtr4d 2773 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
86853ad2antl1 1186 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8786adantr 480 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8887oveq1d 7420 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
8958, 62, 88rspcedvd 3603 . . . . . . 7 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
9089rexlimdva2 3143 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9152, 90mpd 15 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
92913exp 1119 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
9351, 92jaoi 857 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
941, 93sylbi 217 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
95943imp 1110 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cn 12240  2c2 12295  4c4 12297  5c5 12298  0cn0 12501  cuz 12852  cexp 14079  cdvds 16272  cprime 16690  FermatNocfmtno 47541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-ioo 13366  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920  df-dvds 16273  df-gcd 16514  df-prm 16691  df-odz 16784  df-phi 16785  df-pc 16857  df-lgs 27258  df-fmtno 47542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator