Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac1 Structured version   Visualization version   GIF version

Theorem fmtnofac1 45022
Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result): "Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of Fn ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 45021. (Contributed by AV, 30-Jul-2021.)

Assertion
Ref Expression
fmtnofac1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12665 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 5prm 16810 . . . . . . 7 5 ∈ ℙ
3 dvdsprime 16392 . . . . . . 7 ((5 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
42, 3mpan 687 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
5 1nn0 12249 . . . . . . . . 9 1 ∈ ℕ0
65a1i 11 . . . . . . . 8 (𝑀 = 5 → 1 ∈ ℕ0)
7 simpl 483 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → 𝑀 = 5)
8 oveq1 7282 . . . . . . . . . . 11 (𝑘 = 1 → (𝑘 · 4) = (1 · 4))
98oveq1d 7290 . . . . . . . . . 10 (𝑘 = 1 → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
109adantl 482 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
117, 10eqeq12d 2754 . . . . . . . 8 ((𝑀 = 5 ∧ 𝑘 = 1) → (𝑀 = ((𝑘 · 4) + 1) ↔ 5 = ((1 · 4) + 1)))
12 df-5 12039 . . . . . . . . . 10 5 = (4 + 1)
13 4cn 12058 . . . . . . . . . . . . 13 4 ∈ ℂ
1413mulid2i 10980 . . . . . . . . . . . 12 (1 · 4) = 4
1514eqcomi 2747 . . . . . . . . . . 11 4 = (1 · 4)
1615oveq1i 7285 . . . . . . . . . 10 (4 + 1) = ((1 · 4) + 1)
1712, 16eqtri 2766 . . . . . . . . 9 5 = ((1 · 4) + 1)
1817a1i 11 . . . . . . . 8 (𝑀 = 5 → 5 = ((1 · 4) + 1))
196, 11, 18rspcedvd 3563 . . . . . . 7 (𝑀 = 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
20 0nn0 12248 . . . . . . . . 9 0 ∈ ℕ0
2120a1i 11 . . . . . . . 8 (𝑀 = 1 → 0 ∈ ℕ0)
22 simpl 483 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → 𝑀 = 1)
23 oveq1 7282 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 · 4) = (0 · 4))
2423oveq1d 7290 . . . . . . . . . 10 (𝑘 = 0 → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2524adantl 482 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2622, 25eqeq12d 2754 . . . . . . . 8 ((𝑀 = 1 ∧ 𝑘 = 0) → (𝑀 = ((𝑘 · 4) + 1) ↔ 1 = ((0 · 4) + 1)))
2713mul02i 11164 . . . . . . . . . . . 12 (0 · 4) = 0
2827oveq1i 7285 . . . . . . . . . . 11 ((0 · 4) + 1) = (0 + 1)
29 0p1e1 12095 . . . . . . . . . . 11 (0 + 1) = 1
3028, 29eqtri 2766 . . . . . . . . . 10 ((0 · 4) + 1) = 1
3130eqcomi 2747 . . . . . . . . 9 1 = ((0 · 4) + 1)
3231a1i 11 . . . . . . . 8 (𝑀 = 1 → 1 = ((0 · 4) + 1))
3321, 26, 32rspcedvd 3563 . . . . . . 7 (𝑀 = 1 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
3419, 33jaoi 854 . . . . . 6 ((𝑀 = 5 ∨ 𝑀 = 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
354, 34syl6bi 252 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
36 fveq2 6774 . . . . . . . 8 (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1))
37 fmtno1 44993 . . . . . . . 8 (FermatNo‘1) = 5
3836, 37eqtrdi 2794 . . . . . . 7 (𝑁 = 1 → (FermatNo‘𝑁) = 5)
3938breq2d 5086 . . . . . 6 (𝑁 = 1 → (𝑀 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ 5))
40 oveq1 7282 . . . . . . . . . . . . 13 (𝑁 = 1 → (𝑁 + 1) = (1 + 1))
41 1p1e2 12098 . . . . . . . . . . . . 13 (1 + 1) = 2
4240, 41eqtrdi 2794 . . . . . . . . . . . 12 (𝑁 = 1 → (𝑁 + 1) = 2)
4342oveq2d 7291 . . . . . . . . . . 11 (𝑁 = 1 → (2↑(𝑁 + 1)) = (2↑2))
44 sq2 13914 . . . . . . . . . . 11 (2↑2) = 4
4543, 44eqtrdi 2794 . . . . . . . . . 10 (𝑁 = 1 → (2↑(𝑁 + 1)) = 4)
4645oveq2d 7291 . . . . . . . . 9 (𝑁 = 1 → (𝑘 · (2↑(𝑁 + 1))) = (𝑘 · 4))
4746oveq1d 7290 . . . . . . . 8 (𝑁 = 1 → ((𝑘 · (2↑(𝑁 + 1))) + 1) = ((𝑘 · 4) + 1))
4847eqeq2d 2749 . . . . . . 7 (𝑁 = 1 → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ 𝑀 = ((𝑘 · 4) + 1)))
4948rexbidv 3226 . . . . . 6 (𝑁 = 1 → (∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
5039, 49imbi12d 345 . . . . 5 (𝑁 = 1 → ((𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) ↔ (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))))
5135, 50syl5ibr 245 . . . 4 (𝑁 = 1 → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
52 fmtnofac2 45021 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
53 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
54 2nn0 12250 . . . . . . . . . . . 12 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
5653, 55nn0mulcld 12298 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 · 2) ∈ ℕ0)
5756adantl 482 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 2) ∈ ℕ0)
5857adantr 481 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · 2) ∈ ℕ0)
59 simpr 485 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
60 oveq1 7282 . . . . . . . . . 10 (𝑘 = (𝑛 · 2) → (𝑘 · (2↑(𝑁 + 1))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
6160oveq1d 7290 . . . . . . . . 9 (𝑘 = (𝑛 · 2) → ((𝑘 · (2↑(𝑁 + 1))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
6259, 61eqeqan12d 2752 . . . . . . . 8 (((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) ∧ 𝑘 = (𝑛 · 2)) → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1)))
63 eluzge2nn0 12627 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6463nn0cnd 12295 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
65 add1p1 12224 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
6664, 65syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) + 1) = (𝑁 + 2))
6766eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6867oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2↑((𝑁 + 1) + 1)))
69 2cnd 12051 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
70 peano2nn0 12273 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7163, 70syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
7269, 71expp1d 13865 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
7354a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
7473, 71nn0expcld 13961 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
7574nn0cnd 12295 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
7675, 69mulcomd 10996 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2 · (2↑(𝑁 + 1))))
7768, 72, 763eqtrd 2782 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7877adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7978oveq2d 7291 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
80 nn0cn 12243 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
8180adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
82 2cnd 12051 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8375adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℂ)
8481, 82, 83mulassd 10998 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 · 2) · (2↑(𝑁 + 1))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
8579, 84eqtr4d 2781 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
86853ad2antl1 1184 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8786adantr 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8887oveq1d 7290 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
8958, 62, 88rspcedvd 3563 . . . . . . 7 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
9089rexlimdva2 3216 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9152, 90mpd 15 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
92913exp 1118 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
9351, 92jaoi 854 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
941, 93sylbi 216 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
95943imp 1110 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cn 11973  2c2 12028  4c4 12030  5c5 12031  0cn0 12233  cuz 12582  cexp 13782  cdvds 15963  cprime 16376  FermatNocfmtno 44979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-dvds 15964  df-gcd 16202  df-prm 16377  df-odz 16466  df-phi 16467  df-pc 16538  df-lgs 26443  df-fmtno 44980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator