Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac1 Structured version   Visualization version   GIF version

Theorem fmtnofac1 45362
Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result): "Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of Fn ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 45361. (Contributed by AV, 30-Jul-2021.)

Assertion
Ref Expression
fmtnofac1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12758 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 5prm 16899 . . . . . . 7 5 ∈ ℙ
3 dvdsprime 16481 . . . . . . 7 ((5 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
42, 3mpan 687 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
5 1nn0 12342 . . . . . . . . 9 1 ∈ ℕ0
65a1i 11 . . . . . . . 8 (𝑀 = 5 → 1 ∈ ℕ0)
7 simpl 483 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → 𝑀 = 5)
8 oveq1 7336 . . . . . . . . . . 11 (𝑘 = 1 → (𝑘 · 4) = (1 · 4))
98oveq1d 7344 . . . . . . . . . 10 (𝑘 = 1 → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
109adantl 482 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
117, 10eqeq12d 2752 . . . . . . . 8 ((𝑀 = 5 ∧ 𝑘 = 1) → (𝑀 = ((𝑘 · 4) + 1) ↔ 5 = ((1 · 4) + 1)))
12 df-5 12132 . . . . . . . . . 10 5 = (4 + 1)
13 4cn 12151 . . . . . . . . . . . . 13 4 ∈ ℂ
1413mulid2i 11073 . . . . . . . . . . . 12 (1 · 4) = 4
1514eqcomi 2745 . . . . . . . . . . 11 4 = (1 · 4)
1615oveq1i 7339 . . . . . . . . . 10 (4 + 1) = ((1 · 4) + 1)
1712, 16eqtri 2764 . . . . . . . . 9 5 = ((1 · 4) + 1)
1817a1i 11 . . . . . . . 8 (𝑀 = 5 → 5 = ((1 · 4) + 1))
196, 11, 18rspcedvd 3572 . . . . . . 7 (𝑀 = 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
20 0nn0 12341 . . . . . . . . 9 0 ∈ ℕ0
2120a1i 11 . . . . . . . 8 (𝑀 = 1 → 0 ∈ ℕ0)
22 simpl 483 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → 𝑀 = 1)
23 oveq1 7336 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 · 4) = (0 · 4))
2423oveq1d 7344 . . . . . . . . . 10 (𝑘 = 0 → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2524adantl 482 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2622, 25eqeq12d 2752 . . . . . . . 8 ((𝑀 = 1 ∧ 𝑘 = 0) → (𝑀 = ((𝑘 · 4) + 1) ↔ 1 = ((0 · 4) + 1)))
2713mul02i 11257 . . . . . . . . . . . 12 (0 · 4) = 0
2827oveq1i 7339 . . . . . . . . . . 11 ((0 · 4) + 1) = (0 + 1)
29 0p1e1 12188 . . . . . . . . . . 11 (0 + 1) = 1
3028, 29eqtri 2764 . . . . . . . . . 10 ((0 · 4) + 1) = 1
3130eqcomi 2745 . . . . . . . . 9 1 = ((0 · 4) + 1)
3231a1i 11 . . . . . . . 8 (𝑀 = 1 → 1 = ((0 · 4) + 1))
3321, 26, 32rspcedvd 3572 . . . . . . 7 (𝑀 = 1 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
3419, 33jaoi 854 . . . . . 6 ((𝑀 = 5 ∨ 𝑀 = 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
354, 34syl6bi 252 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
36 fveq2 6819 . . . . . . . 8 (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1))
37 fmtno1 45333 . . . . . . . 8 (FermatNo‘1) = 5
3836, 37eqtrdi 2792 . . . . . . 7 (𝑁 = 1 → (FermatNo‘𝑁) = 5)
3938breq2d 5101 . . . . . 6 (𝑁 = 1 → (𝑀 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ 5))
40 oveq1 7336 . . . . . . . . . . . . 13 (𝑁 = 1 → (𝑁 + 1) = (1 + 1))
41 1p1e2 12191 . . . . . . . . . . . . 13 (1 + 1) = 2
4240, 41eqtrdi 2792 . . . . . . . . . . . 12 (𝑁 = 1 → (𝑁 + 1) = 2)
4342oveq2d 7345 . . . . . . . . . . 11 (𝑁 = 1 → (2↑(𝑁 + 1)) = (2↑2))
44 sq2 14007 . . . . . . . . . . 11 (2↑2) = 4
4543, 44eqtrdi 2792 . . . . . . . . . 10 (𝑁 = 1 → (2↑(𝑁 + 1)) = 4)
4645oveq2d 7345 . . . . . . . . 9 (𝑁 = 1 → (𝑘 · (2↑(𝑁 + 1))) = (𝑘 · 4))
4746oveq1d 7344 . . . . . . . 8 (𝑁 = 1 → ((𝑘 · (2↑(𝑁 + 1))) + 1) = ((𝑘 · 4) + 1))
4847eqeq2d 2747 . . . . . . 7 (𝑁 = 1 → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ 𝑀 = ((𝑘 · 4) + 1)))
4948rexbidv 3171 . . . . . 6 (𝑁 = 1 → (∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
5039, 49imbi12d 344 . . . . 5 (𝑁 = 1 → ((𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) ↔ (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))))
5135, 50syl5ibr 245 . . . 4 (𝑁 = 1 → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
52 fmtnofac2 45361 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
53 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
54 2nn0 12343 . . . . . . . . . . . 12 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
5653, 55nn0mulcld 12391 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 · 2) ∈ ℕ0)
5756adantl 482 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 2) ∈ ℕ0)
5857adantr 481 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · 2) ∈ ℕ0)
59 simpr 485 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
60 oveq1 7336 . . . . . . . . . 10 (𝑘 = (𝑛 · 2) → (𝑘 · (2↑(𝑁 + 1))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
6160oveq1d 7344 . . . . . . . . 9 (𝑘 = (𝑛 · 2) → ((𝑘 · (2↑(𝑁 + 1))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
6259, 61eqeqan12d 2750 . . . . . . . 8 (((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) ∧ 𝑘 = (𝑛 · 2)) → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1)))
63 eluzge2nn0 12720 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6463nn0cnd 12388 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
65 add1p1 12317 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
6664, 65syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) + 1) = (𝑁 + 2))
6766eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6867oveq2d 7345 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2↑((𝑁 + 1) + 1)))
69 2cnd 12144 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
70 peano2nn0 12366 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7163, 70syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
7269, 71expp1d 13958 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
7354a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
7473, 71nn0expcld 14054 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
7574nn0cnd 12388 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
7675, 69mulcomd 11089 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2 · (2↑(𝑁 + 1))))
7768, 72, 763eqtrd 2780 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7877adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7978oveq2d 7345 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
80 nn0cn 12336 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
8180adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
82 2cnd 12144 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8375adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℂ)
8481, 82, 83mulassd 11091 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 · 2) · (2↑(𝑁 + 1))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
8579, 84eqtr4d 2779 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
86853ad2antl1 1184 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8786adantr 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8887oveq1d 7344 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
8958, 62, 88rspcedvd 3572 . . . . . . 7 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
9089rexlimdva2 3150 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9152, 90mpd 15 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
92913exp 1118 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
9351, 92jaoi 854 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
941, 93sylbi 216 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
95943imp 1110 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  wrex 3070   class class class wbr 5089  cfv 6473  (class class class)co 7329  cc 10962  0cc0 10964  1c1 10965   + caddc 10967   · cmul 10969  cn 12066  2c2 12121  4c4 12123  5c5 12124  0cn0 12326  cuz 12675  cexp 13875  cdvds 16054  cprime 16465  FermatNocfmtno 45319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-oadd 8363  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-inf 9292  df-oi 9359  df-dju 9750  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-xnn0 12399  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-ioo 13176  df-ico 13178  df-fz 13333  df-fzo 13476  df-fl 13605  df-mod 13683  df-seq 13815  df-exp 13876  df-fac 14081  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288  df-prod 15707  df-dvds 16055  df-gcd 16293  df-prm 16466  df-odz 16555  df-phi 16556  df-pc 16627  df-lgs 26541  df-fmtno 45320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator