MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem1 Structured version   Visualization version   GIF version

Theorem addsproplem1 27876
Description: Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8367 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem1.2 (𝜑𝐴 No )
addsproplem1.3 (𝜑𝐵 No )
addsproplem1.4 (𝜑𝐶 No )
addsproplem1.5 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
Assertion
Ref Expression
addsproplem1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem addsproplem1
StepHypRef Expression
1 addsproplem1.2 . . 3 (𝜑𝐴 No )
2 addsproplem1.3 . . 3 (𝜑𝐵 No )
3 addsproplem1.4 . . 3 (𝜑𝐶 No )
41, 2, 33jca 1128 . 2 (𝜑 → (𝐴 No 𝐵 No 𝐶 No ))
5 addsproplem.1 . 2 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
6 addsproplem1.5 . 2 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
7 fveq2 6858 . . . . . . 7 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
87oveq1d 7402 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝑦)))
97oveq1d 7402 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝑧)))
108, 9uneq12d 4132 . . . . 5 (𝑥 = 𝐴 → ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
1110eleq1d 2813 . . . 4 (𝑥 = 𝐴 → (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
12 oveq1 7394 . . . . . 6 (𝑥 = 𝐴 → (𝑥 +s 𝑦) = (𝐴 +s 𝑦))
1312eleq1d 2813 . . . . 5 (𝑥 = 𝐴 → ((𝑥 +s 𝑦) ∈ No ↔ (𝐴 +s 𝑦) ∈ No ))
14 oveq2 7395 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 +s 𝑥) = (𝑦 +s 𝐴))
15 oveq2 7395 . . . . . . 7 (𝑥 = 𝐴 → (𝑧 +s 𝑥) = (𝑧 +s 𝐴))
1614, 15breq12d 5120 . . . . . 6 (𝑥 = 𝐴 → ((𝑦 +s 𝑥) <s (𝑧 +s 𝑥) ↔ (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))
1716imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)) ↔ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))
1813, 17anbi12d 632 . . . 4 (𝑥 = 𝐴 → (((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))) ↔ ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))))
1911, 18imbi12d 344 . . 3 (𝑥 = 𝐴 → ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))))
20 fveq2 6858 . . . . . . 7 (𝑦 = 𝐵 → ( bday 𝑦) = ( bday 𝐵))
2120oveq2d 7403 . . . . . 6 (𝑦 = 𝐵 → (( bday 𝐴) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝐵)))
2221uneq1d 4130 . . . . 5 (𝑦 = 𝐵 → ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
2322eleq1d 2813 . . . 4 (𝑦 = 𝐵 → (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
24 oveq2 7395 . . . . . 6 (𝑦 = 𝐵 → (𝐴 +s 𝑦) = (𝐴 +s 𝐵))
2524eleq1d 2813 . . . . 5 (𝑦 = 𝐵 → ((𝐴 +s 𝑦) ∈ No ↔ (𝐴 +s 𝐵) ∈ No ))
26 breq1 5110 . . . . . 6 (𝑦 = 𝐵 → (𝑦 <s 𝑧𝐵 <s 𝑧))
27 oveq1 7394 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 +s 𝐴) = (𝐵 +s 𝐴))
2827breq1d 5117 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))
2926, 28imbi12d 344 . . . . 5 (𝑦 = 𝐵 → ((𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))
3025, 29anbi12d 632 . . . 4 (𝑦 = 𝐵 → (((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))))
3123, 30imbi12d 344 . . 3 (𝑦 = 𝐵 → ((((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))))
32 fveq2 6858 . . . . . . 7 (𝑧 = 𝐶 → ( bday 𝑧) = ( bday 𝐶))
3332oveq2d 7403 . . . . . 6 (𝑧 = 𝐶 → (( bday 𝐴) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝐶)))
3433uneq2d 4131 . . . . 5 (𝑧 = 𝐶 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))))
3534eleq1d 2813 . . . 4 (𝑧 = 𝐶 → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
36 breq2 5111 . . . . . 6 (𝑧 = 𝐶 → (𝐵 <s 𝑧𝐵 <s 𝐶))
37 oveq1 7394 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 +s 𝐴) = (𝐶 +s 𝐴))
3837breq2d 5119 . . . . . 6 (𝑧 = 𝐶 → ((𝐵 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))
3936, 38imbi12d 344 . . . . 5 (𝑧 = 𝐶 → ((𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
4039anbi2d 630 . . . 4 (𝑧 = 𝐶 → (((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))))
4135, 40imbi12d 344 . . 3 (𝑧 = 𝐶 → ((((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
4219, 31, 41rspc3v 3604 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
434, 5, 6, 42syl3c 66 1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3912   class class class wbr 5107  cfv 6511  (class class class)co 7387   +no cnadd 8629   No csur 27551   <s cslt 27552   bday cbday 27553   +s cadds 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  addsproplem2  27877  addsproplem6  27881
  Copyright terms: Public domain W3C validator