MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem1 Structured version   Visualization version   GIF version

Theorem addsproplem1 27883
Description: Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8370 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem1.2 (𝜑𝐴 No )
addsproplem1.3 (𝜑𝐵 No )
addsproplem1.4 (𝜑𝐶 No )
addsproplem1.5 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
Assertion
Ref Expression
addsproplem1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem addsproplem1
StepHypRef Expression
1 addsproplem1.2 . . 3 (𝜑𝐴 No )
2 addsproplem1.3 . . 3 (𝜑𝐵 No )
3 addsproplem1.4 . . 3 (𝜑𝐶 No )
41, 2, 33jca 1128 . 2 (𝜑 → (𝐴 No 𝐵 No 𝐶 No ))
5 addsproplem.1 . 2 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
6 addsproplem1.5 . 2 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
7 fveq2 6861 . . . . . . 7 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
87oveq1d 7405 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝑦)))
97oveq1d 7405 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝑧)))
108, 9uneq12d 4135 . . . . 5 (𝑥 = 𝐴 → ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
1110eleq1d 2814 . . . 4 (𝑥 = 𝐴 → (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
12 oveq1 7397 . . . . . 6 (𝑥 = 𝐴 → (𝑥 +s 𝑦) = (𝐴 +s 𝑦))
1312eleq1d 2814 . . . . 5 (𝑥 = 𝐴 → ((𝑥 +s 𝑦) ∈ No ↔ (𝐴 +s 𝑦) ∈ No ))
14 oveq2 7398 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 +s 𝑥) = (𝑦 +s 𝐴))
15 oveq2 7398 . . . . . . 7 (𝑥 = 𝐴 → (𝑧 +s 𝑥) = (𝑧 +s 𝐴))
1614, 15breq12d 5123 . . . . . 6 (𝑥 = 𝐴 → ((𝑦 +s 𝑥) <s (𝑧 +s 𝑥) ↔ (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))
1716imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)) ↔ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))
1813, 17anbi12d 632 . . . 4 (𝑥 = 𝐴 → (((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))) ↔ ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))))
1911, 18imbi12d 344 . . 3 (𝑥 = 𝐴 → ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))))
20 fveq2 6861 . . . . . . 7 (𝑦 = 𝐵 → ( bday 𝑦) = ( bday 𝐵))
2120oveq2d 7406 . . . . . 6 (𝑦 = 𝐵 → (( bday 𝐴) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝐵)))
2221uneq1d 4133 . . . . 5 (𝑦 = 𝐵 → ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
2322eleq1d 2814 . . . 4 (𝑦 = 𝐵 → (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
24 oveq2 7398 . . . . . 6 (𝑦 = 𝐵 → (𝐴 +s 𝑦) = (𝐴 +s 𝐵))
2524eleq1d 2814 . . . . 5 (𝑦 = 𝐵 → ((𝐴 +s 𝑦) ∈ No ↔ (𝐴 +s 𝐵) ∈ No ))
26 breq1 5113 . . . . . 6 (𝑦 = 𝐵 → (𝑦 <s 𝑧𝐵 <s 𝑧))
27 oveq1 7397 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 +s 𝐴) = (𝐵 +s 𝐴))
2827breq1d 5120 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))
2926, 28imbi12d 344 . . . . 5 (𝑦 = 𝐵 → ((𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))
3025, 29anbi12d 632 . . . 4 (𝑦 = 𝐵 → (((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))))
3123, 30imbi12d 344 . . 3 (𝑦 = 𝐵 → ((((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))))
32 fveq2 6861 . . . . . . 7 (𝑧 = 𝐶 → ( bday 𝑧) = ( bday 𝐶))
3332oveq2d 7406 . . . . . 6 (𝑧 = 𝐶 → (( bday 𝐴) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝐶)))
3433uneq2d 4134 . . . . 5 (𝑧 = 𝐶 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))))
3534eleq1d 2814 . . . 4 (𝑧 = 𝐶 → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
36 breq2 5114 . . . . . 6 (𝑧 = 𝐶 → (𝐵 <s 𝑧𝐵 <s 𝐶))
37 oveq1 7397 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 +s 𝐴) = (𝐶 +s 𝐴))
3837breq2d 5122 . . . . . 6 (𝑧 = 𝐶 → ((𝐵 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))
3936, 38imbi12d 344 . . . . 5 (𝑧 = 𝐶 → ((𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
4039anbi2d 630 . . . 4 (𝑧 = 𝐶 → (((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))))
4135, 40imbi12d 344 . . 3 (𝑧 = 𝐶 → ((((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
4219, 31, 41rspc3v 3607 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
434, 5, 6, 42syl3c 66 1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cun 3915   class class class wbr 5110  cfv 6514  (class class class)co 7390   +no cnadd 8632   No csur 27558   <s cslt 27559   bday cbday 27560   +s cadds 27873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  addsproplem2  27884  addsproplem6  27888
  Copyright terms: Public domain W3C validator