MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem1 Structured version   Visualization version   GIF version

Theorem addsproplem1 27852
Description: Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8344 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem1.2 (𝜑𝐴 No )
addsproplem1.3 (𝜑𝐵 No )
addsproplem1.4 (𝜑𝐶 No )
addsproplem1.5 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
Assertion
Ref Expression
addsproplem1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem addsproplem1
StepHypRef Expression
1 addsproplem1.2 . . 3 (𝜑𝐴 No )
2 addsproplem1.3 . . 3 (𝜑𝐵 No )
3 addsproplem1.4 . . 3 (𝜑𝐶 No )
41, 2, 33jca 1128 . 2 (𝜑 → (𝐴 No 𝐵 No 𝐶 No ))
5 addsproplem.1 . 2 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
6 addsproplem1.5 . 2 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
7 fveq2 6840 . . . . . . 7 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
87oveq1d 7384 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝑦)))
97oveq1d 7384 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝑧)))
108, 9uneq12d 4128 . . . . 5 (𝑥 = 𝐴 → ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
1110eleq1d 2813 . . . 4 (𝑥 = 𝐴 → (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
12 oveq1 7376 . . . . . 6 (𝑥 = 𝐴 → (𝑥 +s 𝑦) = (𝐴 +s 𝑦))
1312eleq1d 2813 . . . . 5 (𝑥 = 𝐴 → ((𝑥 +s 𝑦) ∈ No ↔ (𝐴 +s 𝑦) ∈ No ))
14 oveq2 7377 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 +s 𝑥) = (𝑦 +s 𝐴))
15 oveq2 7377 . . . . . . 7 (𝑥 = 𝐴 → (𝑧 +s 𝑥) = (𝑧 +s 𝐴))
1614, 15breq12d 5115 . . . . . 6 (𝑥 = 𝐴 → ((𝑦 +s 𝑥) <s (𝑧 +s 𝑥) ↔ (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))
1716imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)) ↔ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))
1813, 17anbi12d 632 . . . 4 (𝑥 = 𝐴 → (((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))) ↔ ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))))
1911, 18imbi12d 344 . . 3 (𝑥 = 𝐴 → ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))))
20 fveq2 6840 . . . . . . 7 (𝑦 = 𝐵 → ( bday 𝑦) = ( bday 𝐵))
2120oveq2d 7385 . . . . . 6 (𝑦 = 𝐵 → (( bday 𝐴) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝐵)))
2221uneq1d 4126 . . . . 5 (𝑦 = 𝐵 → ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
2322eleq1d 2813 . . . 4 (𝑦 = 𝐵 → (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
24 oveq2 7377 . . . . . 6 (𝑦 = 𝐵 → (𝐴 +s 𝑦) = (𝐴 +s 𝐵))
2524eleq1d 2813 . . . . 5 (𝑦 = 𝐵 → ((𝐴 +s 𝑦) ∈ No ↔ (𝐴 +s 𝐵) ∈ No ))
26 breq1 5105 . . . . . 6 (𝑦 = 𝐵 → (𝑦 <s 𝑧𝐵 <s 𝑧))
27 oveq1 7376 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 +s 𝐴) = (𝐵 +s 𝐴))
2827breq1d 5112 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))
2926, 28imbi12d 344 . . . . 5 (𝑦 = 𝐵 → ((𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))
3025, 29anbi12d 632 . . . 4 (𝑦 = 𝐵 → (((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))))
3123, 30imbi12d 344 . . 3 (𝑦 = 𝐵 → ((((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))))
32 fveq2 6840 . . . . . . 7 (𝑧 = 𝐶 → ( bday 𝑧) = ( bday 𝐶))
3332oveq2d 7385 . . . . . 6 (𝑧 = 𝐶 → (( bday 𝐴) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝐶)))
3433uneq2d 4127 . . . . 5 (𝑧 = 𝐶 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))))
3534eleq1d 2813 . . . 4 (𝑧 = 𝐶 → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
36 breq2 5106 . . . . . 6 (𝑧 = 𝐶 → (𝐵 <s 𝑧𝐵 <s 𝐶))
37 oveq1 7376 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 +s 𝐴) = (𝐶 +s 𝐴))
3837breq2d 5114 . . . . . 6 (𝑧 = 𝐶 → ((𝐵 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))
3936, 38imbi12d 344 . . . . 5 (𝑧 = 𝐶 → ((𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
4039anbi2d 630 . . . 4 (𝑧 = 𝐶 → (((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))))
4135, 40imbi12d 344 . . 3 (𝑧 = 𝐶 → ((((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
4219, 31, 41rspc3v 3601 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
434, 5, 6, 42syl3c 66 1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3909   class class class wbr 5102  cfv 6499  (class class class)co 7369   +no cnadd 8606   No csur 27527   <s cslt 27528   bday cbday 27529   +s cadds 27842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  addsproplem2  27853  addsproplem6  27857
  Copyright terms: Public domain W3C validator