MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem1 Structured version   Visualization version   GIF version

Theorem addsproplem1 27899
Description: Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8328 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem1.2 (𝜑𝐴 No )
addsproplem1.3 (𝜑𝐵 No )
addsproplem1.4 (𝜑𝐶 No )
addsproplem1.5 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
Assertion
Ref Expression
addsproplem1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem addsproplem1
StepHypRef Expression
1 addsproplem1.2 . . 3 (𝜑𝐴 No )
2 addsproplem1.3 . . 3 (𝜑𝐵 No )
3 addsproplem1.4 . . 3 (𝜑𝐶 No )
41, 2, 33jca 1128 . 2 (𝜑 → (𝐴 No 𝐵 No 𝐶 No ))
5 addsproplem.1 . 2 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
6 addsproplem1.5 . 2 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
7 fveq2 6826 . . . . . . 7 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
87oveq1d 7368 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝑦)))
97oveq1d 7368 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝑧)))
108, 9uneq12d 4122 . . . . 5 (𝑥 = 𝐴 → ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
1110eleq1d 2813 . . . 4 (𝑥 = 𝐴 → (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
12 oveq1 7360 . . . . . 6 (𝑥 = 𝐴 → (𝑥 +s 𝑦) = (𝐴 +s 𝑦))
1312eleq1d 2813 . . . . 5 (𝑥 = 𝐴 → ((𝑥 +s 𝑦) ∈ No ↔ (𝐴 +s 𝑦) ∈ No ))
14 oveq2 7361 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 +s 𝑥) = (𝑦 +s 𝐴))
15 oveq2 7361 . . . . . . 7 (𝑥 = 𝐴 → (𝑧 +s 𝑥) = (𝑧 +s 𝐴))
1614, 15breq12d 5108 . . . . . 6 (𝑥 = 𝐴 → ((𝑦 +s 𝑥) <s (𝑧 +s 𝑥) ↔ (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))
1716imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)) ↔ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))
1813, 17anbi12d 632 . . . 4 (𝑥 = 𝐴 → (((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))) ↔ ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))))
1911, 18imbi12d 344 . . 3 (𝑥 = 𝐴 → ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))))
20 fveq2 6826 . . . . . . 7 (𝑦 = 𝐵 → ( bday 𝑦) = ( bday 𝐵))
2120oveq2d 7369 . . . . . 6 (𝑦 = 𝐵 → (( bday 𝐴) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝐵)))
2221uneq1d 4120 . . . . 5 (𝑦 = 𝐵 → ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
2322eleq1d 2813 . . . 4 (𝑦 = 𝐵 → (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
24 oveq2 7361 . . . . . 6 (𝑦 = 𝐵 → (𝐴 +s 𝑦) = (𝐴 +s 𝐵))
2524eleq1d 2813 . . . . 5 (𝑦 = 𝐵 → ((𝐴 +s 𝑦) ∈ No ↔ (𝐴 +s 𝐵) ∈ No ))
26 breq1 5098 . . . . . 6 (𝑦 = 𝐵 → (𝑦 <s 𝑧𝐵 <s 𝑧))
27 oveq1 7360 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 +s 𝐴) = (𝐵 +s 𝐴))
2827breq1d 5105 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))
2926, 28imbi12d 344 . . . . 5 (𝑦 = 𝐵 → ((𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))
3025, 29anbi12d 632 . . . 4 (𝑦 = 𝐵 → (((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))))
3123, 30imbi12d 344 . . 3 (𝑦 = 𝐵 → ((((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))))
32 fveq2 6826 . . . . . . 7 (𝑧 = 𝐶 → ( bday 𝑧) = ( bday 𝐶))
3332oveq2d 7369 . . . . . 6 (𝑧 = 𝐶 → (( bday 𝐴) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝐶)))
3433uneq2d 4121 . . . . 5 (𝑧 = 𝐶 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))))
3534eleq1d 2813 . . . 4 (𝑧 = 𝐶 → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
36 breq2 5099 . . . . . 6 (𝑧 = 𝐶 → (𝐵 <s 𝑧𝐵 <s 𝐶))
37 oveq1 7360 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 +s 𝐴) = (𝐶 +s 𝐴))
3837breq2d 5107 . . . . . 6 (𝑧 = 𝐶 → ((𝐵 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))
3936, 38imbi12d 344 . . . . 5 (𝑧 = 𝐶 → ((𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
4039anbi2d 630 . . . 4 (𝑧 = 𝐶 → (((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))))
4135, 40imbi12d 344 . . 3 (𝑧 = 𝐶 → ((((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
4219, 31, 41rspc3v 3595 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
434, 5, 6, 42syl3c 66 1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3903   class class class wbr 5095  cfv 6486  (class class class)co 7353   +no cnadd 8590   No csur 27567   <s cslt 27568   bday cbday 27569   +s cadds 27889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356
This theorem is referenced by:  addsproplem2  27900  addsproplem6  27904
  Copyright terms: Public domain W3C validator