MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem1 Structured version   Visualization version   GIF version

Theorem addsproplem1 27907
Description: Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8313 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem1.2 (𝜑𝐴 No )
addsproplem1.3 (𝜑𝐵 No )
addsproplem1.4 (𝜑𝐶 No )
addsproplem1.5 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
Assertion
Ref Expression
addsproplem1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem addsproplem1
StepHypRef Expression
1 addsproplem1.2 . . 3 (𝜑𝐴 No )
2 addsproplem1.3 . . 3 (𝜑𝐵 No )
3 addsproplem1.4 . . 3 (𝜑𝐶 No )
41, 2, 33jca 1128 . 2 (𝜑 → (𝐴 No 𝐵 No 𝐶 No ))
5 addsproplem.1 . 2 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
6 addsproplem1.5 . 2 (𝜑 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
7 fveq2 6817 . . . . . . 7 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
87oveq1d 7356 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝑦)))
97oveq1d 7356 . . . . . 6 (𝑥 = 𝐴 → (( bday 𝑥) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝑧)))
108, 9uneq12d 4114 . . . . 5 (𝑥 = 𝐴 → ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
1110eleq1d 2816 . . . 4 (𝑥 = 𝐴 → (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
12 oveq1 7348 . . . . . 6 (𝑥 = 𝐴 → (𝑥 +s 𝑦) = (𝐴 +s 𝑦))
1312eleq1d 2816 . . . . 5 (𝑥 = 𝐴 → ((𝑥 +s 𝑦) ∈ No ↔ (𝐴 +s 𝑦) ∈ No ))
14 oveq2 7349 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 +s 𝑥) = (𝑦 +s 𝐴))
15 oveq2 7349 . . . . . . 7 (𝑥 = 𝐴 → (𝑧 +s 𝑥) = (𝑧 +s 𝐴))
1614, 15breq12d 5099 . . . . . 6 (𝑥 = 𝐴 → ((𝑦 +s 𝑥) <s (𝑧 +s 𝑥) ↔ (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))
1716imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)) ↔ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))
1813, 17anbi12d 632 . . . 4 (𝑥 = 𝐴 → (((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))) ↔ ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))))
1911, 18imbi12d 344 . . 3 (𝑥 = 𝐴 → ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))))))
20 fveq2 6817 . . . . . . 7 (𝑦 = 𝐵 → ( bday 𝑦) = ( bday 𝐵))
2120oveq2d 7357 . . . . . 6 (𝑦 = 𝐵 → (( bday 𝐴) +no ( bday 𝑦)) = (( bday 𝐴) +no ( bday 𝐵)))
2221uneq1d 4112 . . . . 5 (𝑦 = 𝐵 → ((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))))
2322eleq1d 2816 . . . 4 (𝑦 = 𝐵 → (((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
24 oveq2 7349 . . . . . 6 (𝑦 = 𝐵 → (𝐴 +s 𝑦) = (𝐴 +s 𝐵))
2524eleq1d 2816 . . . . 5 (𝑦 = 𝐵 → ((𝐴 +s 𝑦) ∈ No ↔ (𝐴 +s 𝐵) ∈ No ))
26 breq1 5089 . . . . . 6 (𝑦 = 𝐵 → (𝑦 <s 𝑧𝐵 <s 𝑧))
27 oveq1 7348 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 +s 𝐴) = (𝐵 +s 𝐴))
2827breq1d 5096 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))
2926, 28imbi12d 344 . . . . 5 (𝑦 = 𝐵 → ((𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))
3025, 29anbi12d 632 . . . 4 (𝑦 = 𝐵 → (((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))))
3123, 30imbi12d 344 . . 3 (𝑦 = 𝐵 → ((((( bday 𝐴) +no ( bday 𝑦)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))))))
32 fveq2 6817 . . . . . . 7 (𝑧 = 𝐶 → ( bday 𝑧) = ( bday 𝐶))
3332oveq2d 7357 . . . . . 6 (𝑧 = 𝐶 → (( bday 𝐴) +no ( bday 𝑧)) = (( bday 𝐴) +no ( bday 𝐶)))
3433uneq2d 4113 . . . . 5 (𝑧 = 𝐶 → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) = ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))))
3534eleq1d 2816 . . . 4 (𝑧 = 𝐶 → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍)))))
36 breq2 5090 . . . . . 6 (𝑧 = 𝐶 → (𝐵 <s 𝑧𝐵 <s 𝐶))
37 oveq1 7348 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 +s 𝐴) = (𝐶 +s 𝐴))
3837breq2d 5098 . . . . . 6 (𝑧 = 𝐶 → ((𝐵 +s 𝐴) <s (𝑧 +s 𝐴) ↔ (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))
3936, 38imbi12d 344 . . . . 5 (𝑧 = 𝐶 → ((𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)) ↔ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
4039anbi2d 630 . . . 4 (𝑧 = 𝐶 → (((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴))) ↔ ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))))
4135, 40imbi12d 344 . . 3 (𝑧 = 𝐶 → ((((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝑧 → (𝐵 +s 𝐴) <s (𝑧 +s 𝐴)))) ↔ (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
4219, 31, 41rspc3v 3588 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) → (((( bday 𝐴) +no ( bday 𝐵)) ∪ (( bday 𝐴) +no ( bday 𝐶))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))))
434, 5, 6, 42syl3c 66 1 (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cun 3895   class class class wbr 5086  cfv 6476  (class class class)co 7341   +no cnadd 8575   No csur 27573   <s cslt 27574   bday cbday 27575   +s cadds 27897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344
This theorem is referenced by:  addsproplem2  27908  addsproplem6  27912
  Copyright terms: Public domain W3C validator