MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem6 Structured version   Visualization version   GIF version

Theorem addsproplem6 28025
Description: Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when 𝑌 and 𝑍 are the same age. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
addsproplem6.6 (𝜑 → ( bday 𝑌) = ( bday 𝑍))
Assertion
Ref Expression
addsproplem6 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem6
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addspropord.3 . . . 4 (𝜑𝑌 No )
2 addspropord.4 . . . 4 (𝜑𝑍 No )
3 addsproplem6.6 . . . 4 (𝜑 → ( bday 𝑌) = ( bday 𝑍))
4 addspropord.5 . . . 4 (𝜑𝑌 <s 𝑍)
5 nodense 27755 . . . 4 (((𝑌 No 𝑍 No ) ∧ (( bday 𝑌) = ( bday 𝑍) ∧ 𝑌 <s 𝑍)) → ∃𝑚 No (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))
61, 2, 3, 4, 5syl22anc 838 . . 3 (𝜑 → ∃𝑚 No (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))
7 addsproplem.1 . . . . . . 7 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
8 addspropord.2 . . . . . . 7 (𝜑𝑋 No )
97, 8, 1addsproplem3 28022 . . . . . 6 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
109simp1d 1142 . . . . 5 (𝜑 → (𝑋 +s 𝑌) ∈ No )
1110adantr 480 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) ∈ No )
127adantr 480 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
138adantr 480 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑋 No )
14 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 No )
15 unidm 4180 . . . . . . 7 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑚))) = (( bday 𝑋) +no ( bday 𝑚))
16 simprr1 1221 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ( bday 𝑚) ∈ ( bday 𝑌))
17 bdayelon 27839 . . . . . . . . . 10 ( bday 𝑚) ∈ On
18 bdayelon 27839 . . . . . . . . . 10 ( bday 𝑌) ∈ On
19 bdayelon 27839 . . . . . . . . . 10 ( bday 𝑋) ∈ On
20 naddel2 8744 . . . . . . . . . 10 ((( bday 𝑚) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
2117, 18, 19, 20mp3an 1461 . . . . . . . . 9 (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
2216, 21sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
23 elun1 4205 . . . . . . . 8 ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
2422, 23syl 17 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
2515, 24eqeltrid 2848 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑚))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
2612, 13, 14, 14, 25addsproplem1 28020 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑚 → (𝑚 +s 𝑋) <s (𝑚 +s 𝑋))))
2726simpld 494 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ No )
28 uncom 4181 . . . . . . . . . . . 12 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) = ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌)))
2928eleq2i 2836 . . . . . . . . . . 11 (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))))
3029imbi1i 349 . . . . . . . . . 10 ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
3130ralbii 3099 . . . . . . . . 9 (∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
32312ralbii 3134 . . . . . . . 8 (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
337, 32sylib 218 . . . . . . 7 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
3433, 8, 2addsproplem3 28022 . . . . . 6 (𝜑 → ((𝑋 +s 𝑍) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑍)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑍)𝑔 = (𝑋 +s )})))
3534simp1d 1142 . . . . 5 (𝜑 → (𝑋 +s 𝑍) ∈ No )
3635adantr 480 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑍) ∈ No )
379simp3d 1144 . . . . . 6 (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
3837adantr 480 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
39 ovex 7481 . . . . . . 7 (𝑋 +s 𝑌) ∈ V
4039snid 4684 . . . . . 6 (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}
4140a1i 11 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)})
42 oldbday 27957 . . . . . . . . . . 11 ((( bday 𝑌) ∈ On ∧ 𝑚 No ) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
4318, 14, 42sylancr 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
4416, 43mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( O ‘( bday 𝑌)))
45 simprr2 1222 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑌 <s 𝑚)
46 breq2 5170 . . . . . . . . . 10 (𝑎 = 𝑚 → (𝑌 <s 𝑎𝑌 <s 𝑚))
47 rightval 27921 . . . . . . . . . 10 ( R ‘𝑌) = {𝑎 ∈ ( O ‘( bday 𝑌)) ∣ 𝑌 <s 𝑎}
4846, 47elrab2 3711 . . . . . . . . 9 (𝑚 ∈ ( R ‘𝑌) ↔ (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑌 <s 𝑚))
4944, 45, 48sylanbrc 582 . . . . . . . 8 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( R ‘𝑌))
50 eqid 2740 . . . . . . . 8 (𝑋 +s 𝑚) = (𝑋 +s 𝑚)
51 oveq2 7456 . . . . . . . . 9 ( = 𝑚 → (𝑋 +s ) = (𝑋 +s 𝑚))
5251rspceeqv 3658 . . . . . . . 8 ((𝑚 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑚) = (𝑋 +s 𝑚)) → ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ))
5349, 50, 52sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ))
54 ovex 7481 . . . . . . . 8 (𝑋 +s 𝑚) ∈ V
55 eqeq1 2744 . . . . . . . . 9 (𝑔 = (𝑋 +s 𝑚) → (𝑔 = (𝑋 +s ) ↔ (𝑋 +s 𝑚) = (𝑋 +s )))
5655rexbidv 3185 . . . . . . . 8 (𝑔 = (𝑋 +s 𝑚) → (∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ) ↔ ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s )))
5754, 56elab 3694 . . . . . . 7 ((𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )} ↔ ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ))
5853, 57sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})
59 elun2 4206 . . . . . 6 ((𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )} → (𝑋 +s 𝑚) ∈ ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
6058, 59syl 17 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
6138, 41, 60ssltsepcd 27857 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) <s (𝑋 +s 𝑚))
6233adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
632adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑍 No )
6462, 13, 63addsproplem3 28022 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ((𝑋 +s 𝑍) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑍)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑍)𝑔 = (𝑋 +s )})))
6564simp2d 1143 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)})
663adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ( bday 𝑌) = ( bday 𝑍))
6716, 66eleqtrd 2846 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ( bday 𝑚) ∈ ( bday 𝑍))
68 bdayelon 27839 . . . . . . . . . . 11 ( bday 𝑍) ∈ On
69 oldbday 27957 . . . . . . . . . . 11 ((( bday 𝑍) ∈ On ∧ 𝑚 No ) → (𝑚 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑚) ∈ ( bday 𝑍)))
7068, 14, 69sylancr 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑚 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑚) ∈ ( bday 𝑍)))
7167, 70mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( O ‘( bday 𝑍)))
72 simprr3 1223 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 <s 𝑍)
73 breq1 5169 . . . . . . . . . 10 (𝑎 = 𝑚 → (𝑎 <s 𝑍𝑚 <s 𝑍))
74 leftval 27920 . . . . . . . . . 10 ( L ‘𝑍) = {𝑎 ∈ ( O ‘( bday 𝑍)) ∣ 𝑎 <s 𝑍}
7573, 74elrab2 3711 . . . . . . . . 9 (𝑚 ∈ ( L ‘𝑍) ↔ (𝑚 ∈ ( O ‘( bday 𝑍)) ∧ 𝑚 <s 𝑍))
7671, 72, 75sylanbrc 582 . . . . . . . 8 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( L ‘𝑍))
77 oveq2 7456 . . . . . . . . 9 (𝑑 = 𝑚 → (𝑋 +s 𝑑) = (𝑋 +s 𝑚))
7877rspceeqv 3658 . . . . . . . 8 ((𝑚 ∈ ( L ‘𝑍) ∧ (𝑋 +s 𝑚) = (𝑋 +s 𝑚)) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑))
7976, 50, 78sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑))
80 eqeq1 2744 . . . . . . . . 9 (𝑐 = (𝑋 +s 𝑚) → (𝑐 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑚) = (𝑋 +s 𝑑)))
8180rexbidv 3185 . . . . . . . 8 (𝑐 = (𝑋 +s 𝑚) → (∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑)))
8254, 81elab 3694 . . . . . . 7 ((𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑))
8379, 82sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)})
84 elun2 4206 . . . . . 6 ((𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑚) ∈ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}))
8583, 84syl 17 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}))
86 ovex 7481 . . . . . . 7 (𝑋 +s 𝑍) ∈ V
8786snid 4684 . . . . . 6 (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)}
8887a1i 11 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)})
8965, 85, 88ssltsepcd 27857 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) <s (𝑋 +s 𝑍))
9011, 27, 36, 61, 89slttrd 27822 . . 3 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
916, 90rexlimddv 3167 . 2 (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
921, 8addscomd 28018 . 2 (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌))
932, 8addscomd 28018 . 2 (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍))
9491, 92, 933brtr4d 5198 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  cun 3974  {csn 4648   class class class wbr 5166  Oncon0 6395  cfv 6573  (class class class)co 7448   +no cnadd 8721   No csur 27702   <s cslt 27703   bday cbday 27704   <<s csslt 27843   O cold 27900   L cleft 27902   R cright 27903   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  addsproplem7  28026
  Copyright terms: Public domain W3C validator