MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem6 Structured version   Visualization version   GIF version

Theorem addsproplem6 27918
Description: Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when 𝑌 and 𝑍 are the same age. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
addsproplem6.6 (𝜑 → ( bday 𝑌) = ( bday 𝑍))
Assertion
Ref Expression
addsproplem6 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem6
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addspropord.3 . . . 4 (𝜑𝑌 No )
2 addspropord.4 . . . 4 (𝜑𝑍 No )
3 addsproplem6.6 . . . 4 (𝜑 → ( bday 𝑌) = ( bday 𝑍))
4 addspropord.5 . . . 4 (𝜑𝑌 <s 𝑍)
5 nodense 27632 . . . 4 (((𝑌 No 𝑍 No ) ∧ (( bday 𝑌) = ( bday 𝑍) ∧ 𝑌 <s 𝑍)) → ∃𝑚 No (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))
61, 2, 3, 4, 5syl22anc 838 . . 3 (𝜑 → ∃𝑚 No (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))
7 addsproplem.1 . . . . . . 7 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
8 addspropord.2 . . . . . . 7 (𝜑𝑋 No )
97, 8, 1addsproplem3 27915 . . . . . 6 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
109simp1d 1142 . . . . 5 (𝜑 → (𝑋 +s 𝑌) ∈ No )
1110adantr 480 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) ∈ No )
127adantr 480 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
138adantr 480 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑋 No )
14 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 No )
15 unidm 4107 . . . . . . 7 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑚))) = (( bday 𝑋) +no ( bday 𝑚))
16 simprr1 1222 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ( bday 𝑚) ∈ ( bday 𝑌))
17 bdayelon 27716 . . . . . . . . . 10 ( bday 𝑚) ∈ On
18 bdayelon 27716 . . . . . . . . . 10 ( bday 𝑌) ∈ On
19 bdayelon 27716 . . . . . . . . . 10 ( bday 𝑋) ∈ On
20 naddel2 8603 . . . . . . . . . 10 ((( bday 𝑚) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
2117, 18, 19, 20mp3an 1463 . . . . . . . . 9 (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
2216, 21sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
23 elun1 4132 . . . . . . . 8 ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
2422, 23syl 17 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
2515, 24eqeltrid 2835 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑚))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
2612, 13, 14, 14, 25addsproplem1 27913 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑚 → (𝑚 +s 𝑋) <s (𝑚 +s 𝑋))))
2726simpld 494 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ No )
28 uncom 4108 . . . . . . . . . . . 12 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) = ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌)))
2928eleq2i 2823 . . . . . . . . . . 11 (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))))
3029imbi1i 349 . . . . . . . . . 10 ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
3130ralbii 3078 . . . . . . . . 9 (∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
32312ralbii 3107 . . . . . . . 8 (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
337, 32sylib 218 . . . . . . 7 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
3433, 8, 2addsproplem3 27915 . . . . . 6 (𝜑 → ((𝑋 +s 𝑍) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑍)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑍)𝑔 = (𝑋 +s )})))
3534simp1d 1142 . . . . 5 (𝜑 → (𝑋 +s 𝑍) ∈ No )
3635adantr 480 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑍) ∈ No )
379simp3d 1144 . . . . . 6 (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
3837adantr 480 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
39 ovex 7379 . . . . . . 7 (𝑋 +s 𝑌) ∈ V
4039snid 4615 . . . . . 6 (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}
4140a1i 11 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)})
42 oldbday 27847 . . . . . . . . . . 11 ((( bday 𝑌) ∈ On ∧ 𝑚 No ) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
4318, 14, 42sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
4416, 43mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( O ‘( bday 𝑌)))
45 simprr2 1223 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑌 <s 𝑚)
46 elright 27808 . . . . . . . . 9 (𝑚 ∈ ( R ‘𝑌) ↔ (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑌 <s 𝑚))
4744, 45, 46sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( R ‘𝑌))
48 eqid 2731 . . . . . . . 8 (𝑋 +s 𝑚) = (𝑋 +s 𝑚)
49 oveq2 7354 . . . . . . . . 9 ( = 𝑚 → (𝑋 +s ) = (𝑋 +s 𝑚))
5049rspceeqv 3600 . . . . . . . 8 ((𝑚 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑚) = (𝑋 +s 𝑚)) → ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ))
5147, 48, 50sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ))
52 ovex 7379 . . . . . . . 8 (𝑋 +s 𝑚) ∈ V
53 eqeq1 2735 . . . . . . . . 9 (𝑔 = (𝑋 +s 𝑚) → (𝑔 = (𝑋 +s ) ↔ (𝑋 +s 𝑚) = (𝑋 +s )))
5453rexbidv 3156 . . . . . . . 8 (𝑔 = (𝑋 +s 𝑚) → (∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ) ↔ ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s )))
5552, 54elab 3635 . . . . . . 7 ((𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )} ↔ ∃ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ))
5651, 55sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})
57 elun2 4133 . . . . . 6 ((𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )} → (𝑋 +s 𝑚) ∈ ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
5856, 57syl 17 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
5938, 41, 58ssltsepcd 27736 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) <s (𝑋 +s 𝑚))
6033adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
612adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑍 No )
6260, 13, 61addsproplem3 27915 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ((𝑋 +s 𝑍) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑍)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑍)𝑔 = (𝑋 +s )})))
6362simp2d 1143 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)})
643adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ( bday 𝑌) = ( bday 𝑍))
6516, 64eleqtrd 2833 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ( bday 𝑚) ∈ ( bday 𝑍))
66 bdayelon 27716 . . . . . . . . . . 11 ( bday 𝑍) ∈ On
67 oldbday 27847 . . . . . . . . . . 11 ((( bday 𝑍) ∈ On ∧ 𝑚 No ) → (𝑚 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑚) ∈ ( bday 𝑍)))
6866, 14, 67sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑚 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑚) ∈ ( bday 𝑍)))
6965, 68mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( O ‘( bday 𝑍)))
70 simprr3 1224 . . . . . . . . 9 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 <s 𝑍)
71 elleft 27807 . . . . . . . . 9 (𝑚 ∈ ( L ‘𝑍) ↔ (𝑚 ∈ ( O ‘( bday 𝑍)) ∧ 𝑚 <s 𝑍))
7269, 70, 71sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → 𝑚 ∈ ( L ‘𝑍))
73 oveq2 7354 . . . . . . . . 9 (𝑑 = 𝑚 → (𝑋 +s 𝑑) = (𝑋 +s 𝑚))
7473rspceeqv 3600 . . . . . . . 8 ((𝑚 ∈ ( L ‘𝑍) ∧ (𝑋 +s 𝑚) = (𝑋 +s 𝑚)) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑))
7572, 48, 74sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑))
76 eqeq1 2735 . . . . . . . . 9 (𝑐 = (𝑋 +s 𝑚) → (𝑐 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑚) = (𝑋 +s 𝑑)))
7776rexbidv 3156 . . . . . . . 8 (𝑐 = (𝑋 +s 𝑚) → (∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑)))
7852, 77elab 3635 . . . . . . 7 ((𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑))
7975, 78sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)})
80 elun2 4133 . . . . . 6 ((𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑚) ∈ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}))
8179, 80syl 17 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}))
82 ovex 7379 . . . . . . 7 (𝑋 +s 𝑍) ∈ V
8382snid 4615 . . . . . 6 (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)}
8483a1i 11 . . . . 5 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)})
8563, 81, 84ssltsepcd 27736 . . . 4 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑚) <s (𝑋 +s 𝑍))
8611, 27, 36, 59, 85slttrd 27699 . . 3 ((𝜑 ∧ (𝑚 No ∧ (( bday 𝑚) ∈ ( bday 𝑌) ∧ 𝑌 <s 𝑚𝑚 <s 𝑍))) → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
876, 86rexlimddv 3139 . 2 (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
881, 8addscomd 27911 . 2 (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌))
892, 8addscomd 27911 . 2 (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍))
9087, 88, 893brtr4d 5123 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  cun 3900  {csn 4576   class class class wbr 5091  Oncon0 6306  cfv 6481  (class class class)co 7346   +no cnadd 8580   No csur 27579   <s cslt 27580   bday cbday 27581   <<s csslt 27721   O cold 27785   L cleft 27787   R cright 27788   +s cadds 27903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27582  df-slt 27583  df-bday 27584  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904
This theorem is referenced by:  addsproplem7  27919
  Copyright terms: Public domain W3C validator