| Step | Hyp | Ref
| Expression |
| 1 | | addspropord.3 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ No
) |
| 2 | | addspropord.4 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ No
) |
| 3 | | addsproplem6.6 |
. . . 4
⊢ (𝜑 → (
bday ‘𝑌) =
( bday ‘𝑍)) |
| 4 | | addspropord.5 |
. . . 4
⊢ (𝜑 → 𝑌 <s 𝑍) |
| 5 | | nodense 27661 |
. . . 4
⊢ (((𝑌 ∈
No ∧ 𝑍 ∈
No ) ∧ (( bday
‘𝑌) = ( bday ‘𝑍) ∧ 𝑌 <s 𝑍)) → ∃𝑚 ∈ No
(( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍)) |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 |
. . 3
⊢ (𝜑 → ∃𝑚 ∈ No
(( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍)) |
| 7 | | addsproplem.1 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ No
∀𝑦 ∈ No ∀𝑧 ∈ No
(((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑌)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑍))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| 8 | | addspropord.2 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ No
) |
| 9 | 7, 8, 1 | addsproplem3 27935 |
. . . . . 6
⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No
∧ ({𝑎 ∣
∃𝑏 ∈ ( L
‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)}))) |
| 10 | 9 | simp1d 1142 |
. . . . 5
⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No
) |
| 11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑌) ∈ No
) |
| 12 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ∀𝑥 ∈ No
∀𝑦 ∈ No ∀𝑧 ∈ No
(((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑌)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑍))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| 13 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑋 ∈ No
) |
| 14 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑚 ∈ No
) |
| 15 | | unidm 4137 |
. . . . . . 7
⊢ ((( bday ‘𝑋) +no ( bday
‘𝑚)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑚))) =
(( bday ‘𝑋) +no ( bday
‘𝑚)) |
| 16 | | simprr1 1222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ( bday
‘𝑚) ∈
( bday ‘𝑌)) |
| 17 | | bdayelon 27745 |
. . . . . . . . . 10
⊢ ( bday ‘𝑚) ∈ On |
| 18 | | bdayelon 27745 |
. . . . . . . . . 10
⊢ ( bday ‘𝑌) ∈ On |
| 19 | | bdayelon 27745 |
. . . . . . . . . 10
⊢ ( bday ‘𝑋) ∈ On |
| 20 | | naddel2 8705 |
. . . . . . . . . 10
⊢ ((( bday ‘𝑚) ∈ On ∧ (
bday ‘𝑌)
∈ On ∧ ( bday ‘𝑋) ∈ On) → ((
bday ‘𝑚)
∈ ( bday ‘𝑌) ↔ (( bday
‘𝑋) +no ( bday ‘𝑚)) ∈ (( bday
‘𝑋) +no ( bday ‘𝑌)))) |
| 21 | 17, 18, 19, 20 | mp3an 1463 |
. . . . . . . . 9
⊢ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ↔
(( bday ‘𝑋) +no ( bday
‘𝑚)) ∈
(( bday ‘𝑋) +no ( bday
‘𝑌))) |
| 22 | 16, 21 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (( bday
‘𝑋) +no ( bday ‘𝑚)) ∈ (( bday
‘𝑋) +no ( bday ‘𝑌))) |
| 23 | | elun1 4162 |
. . . . . . . 8
⊢ ((( bday ‘𝑋) +no ( bday
‘𝑚)) ∈
(( bday ‘𝑋) +no ( bday
‘𝑌)) →
(( bday ‘𝑋) +no ( bday
‘𝑚)) ∈
((( bday ‘𝑋) +no ( bday
‘𝑌)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑍)))) |
| 24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (( bday
‘𝑋) +no ( bday ‘𝑚)) ∈ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday
‘𝑋) +no ( bday ‘𝑍)))) |
| 25 | 15, 24 | eqeltrid 2839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ((( bday
‘𝑋) +no ( bday ‘𝑚)) ∪ (( bday
‘𝑋) +no ( bday ‘𝑚))) ∈ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday
‘𝑋) +no ( bday ‘𝑍)))) |
| 26 | 12, 13, 14, 14, 25 | addsproplem1 27933 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ((𝑋 +s 𝑚) ∈ No
∧ (𝑚 <s 𝑚 → (𝑚 +s 𝑋) <s (𝑚 +s 𝑋)))) |
| 27 | 26 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ No
) |
| 28 | | uncom 4138 |
. . . . . . . . . . . 12
⊢ ((( bday ‘𝑋) +no ( bday
‘𝑌)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑍))) =
((( bday ‘𝑋) +no ( bday
‘𝑍)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑌))) |
| 29 | 28 | eleq2i 2827 |
. . . . . . . . . . 11
⊢ (((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑌)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑍))) ↔
((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑍)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑌)))) |
| 30 | 29 | imbi1i 349 |
. . . . . . . . . 10
⊢
((((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑌)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑍))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday
‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday
‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday
‘𝑋) +no ( bday ‘𝑍)) ∪ (( bday
‘𝑋) +no ( bday ‘𝑌))) → ((𝑥 +s 𝑦) ∈ No
∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| 31 | 30 | ralbii 3083 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
No (((( bday
‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday
‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday
‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday
‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No
∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑧 ∈ No
(((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑍)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑌))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| 32 | 31 | 2ralbii 3116 |
. . . . . . . 8
⊢
(∀𝑥 ∈
No ∀𝑦 ∈ No
∀𝑧 ∈ No (((( bday ‘𝑥) +no (
bday ‘𝑦))
∪ (( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑌)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑍))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑥 ∈ No
∀𝑦 ∈ No ∀𝑧 ∈ No
(((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑍)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑌))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| 33 | 7, 32 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ No
∀𝑦 ∈ No ∀𝑧 ∈ No
(((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑍)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑌))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| 34 | 33, 8, 2 | addsproplem3 27935 |
. . . . . 6
⊢ (𝜑 → ((𝑋 +s 𝑍) ∈ No
∧ ({𝑎 ∣
∃𝑏 ∈ ( L
‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑍)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑍)𝑔 = (𝑋 +s ℎ)}))) |
| 35 | 34 | simp1d 1142 |
. . . . 5
⊢ (𝜑 → (𝑋 +s 𝑍) ∈ No
) |
| 36 | 35 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑍) ∈ No
) |
| 37 | 9 | simp3d 1144 |
. . . . . 6
⊢ (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)})) |
| 38 | 37 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)})) |
| 39 | | ovex 7443 |
. . . . . . 7
⊢ (𝑋 +s 𝑌) ∈ V |
| 40 | 39 | snid 4643 |
. . . . . 6
⊢ (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)} |
| 41 | 40 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}) |
| 42 | | oldbday 27869 |
. . . . . . . . . . 11
⊢ ((( bday ‘𝑌) ∈ On ∧ 𝑚 ∈ No )
→ (𝑚 ∈ ( O
‘( bday ‘𝑌)) ↔ ( bday
‘𝑚) ∈
( bday ‘𝑌))) |
| 43 | 18, 14, 42 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑚 ∈ ( O ‘(
bday ‘𝑌))
↔ ( bday ‘𝑚) ∈ ( bday
‘𝑌))) |
| 44 | 16, 43 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑚 ∈ ( O ‘(
bday ‘𝑌))) |
| 45 | | simprr2 1223 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑌 <s 𝑚) |
| 46 | | elright 27831 |
. . . . . . . . 9
⊢ (𝑚 ∈ ( R ‘𝑌) ↔ (𝑚 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑌 <s 𝑚)) |
| 47 | 44, 45, 46 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑚 ∈ ( R ‘𝑌)) |
| 48 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑋 +s 𝑚) = (𝑋 +s 𝑚) |
| 49 | | oveq2 7418 |
. . . . . . . . 9
⊢ (ℎ = 𝑚 → (𝑋 +s ℎ) = (𝑋 +s 𝑚)) |
| 50 | 49 | rspceeqv 3629 |
. . . . . . . 8
⊢ ((𝑚 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑚) = (𝑋 +s 𝑚)) → ∃ℎ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ℎ)) |
| 51 | 47, 48, 50 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ∃ℎ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ℎ)) |
| 52 | | ovex 7443 |
. . . . . . . 8
⊢ (𝑋 +s 𝑚) ∈ V |
| 53 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑔 = (𝑋 +s 𝑚) → (𝑔 = (𝑋 +s ℎ) ↔ (𝑋 +s 𝑚) = (𝑋 +s ℎ))) |
| 54 | 53 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑔 = (𝑋 +s 𝑚) → (∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ) ↔ ∃ℎ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ℎ))) |
| 55 | 52, 54 | elab 3663 |
. . . . . . 7
⊢ ((𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)} ↔ ∃ℎ ∈ ( R ‘𝑌)(𝑋 +s 𝑚) = (𝑋 +s ℎ)) |
| 56 | 51, 55 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)}) |
| 57 | | elun2 4163 |
. . . . . 6
⊢ ((𝑋 +s 𝑚) ∈ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)} → (𝑋 +s 𝑚) ∈ ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)})) |
| 58 | 56, 57 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)})) |
| 59 | 38, 41, 58 | ssltsepcd 27763 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑌) <s (𝑋 +s 𝑚)) |
| 60 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ∀𝑥 ∈ No
∀𝑦 ∈ No ∀𝑧 ∈ No
(((( bday ‘𝑥) +no ( bday
‘𝑦)) ∪
(( bday ‘𝑥) +no ( bday
‘𝑧))) ∈
((( bday ‘𝑋) +no ( bday
‘𝑍)) ∪
(( bday ‘𝑋) +no ( bday
‘𝑌))) →
((𝑥 +s 𝑦) ∈
No ∧ (𝑦 <s
𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| 61 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑍 ∈ No
) |
| 62 | 60, 13, 61 | addsproplem3 27935 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ((𝑋 +s 𝑍) ∈ No
∧ ({𝑎 ∣
∃𝑏 ∈ ( L
‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑍)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑍)𝑔 = (𝑋 +s ℎ)}))) |
| 63 | 62 | simp2d 1143 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)}) |
| 64 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ( bday
‘𝑌) = ( bday ‘𝑍)) |
| 65 | 16, 64 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ( bday
‘𝑚) ∈
( bday ‘𝑍)) |
| 66 | | bdayelon 27745 |
. . . . . . . . . . 11
⊢ ( bday ‘𝑍) ∈ On |
| 67 | | oldbday 27869 |
. . . . . . . . . . 11
⊢ ((( bday ‘𝑍) ∈ On ∧ 𝑚 ∈ No )
→ (𝑚 ∈ ( O
‘( bday ‘𝑍)) ↔ ( bday
‘𝑚) ∈
( bday ‘𝑍))) |
| 68 | 66, 14, 67 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑚 ∈ ( O ‘(
bday ‘𝑍))
↔ ( bday ‘𝑚) ∈ ( bday
‘𝑍))) |
| 69 | 65, 68 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑚 ∈ ( O ‘(
bday ‘𝑍))) |
| 70 | | simprr3 1224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑚 <s 𝑍) |
| 71 | | elleft 27830 |
. . . . . . . . 9
⊢ (𝑚 ∈ ( L ‘𝑍) ↔ (𝑚 ∈ ( O ‘(
bday ‘𝑍))
∧ 𝑚 <s 𝑍)) |
| 72 | 69, 70, 71 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → 𝑚 ∈ ( L ‘𝑍)) |
| 73 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑑 = 𝑚 → (𝑋 +s 𝑑) = (𝑋 +s 𝑚)) |
| 74 | 73 | rspceeqv 3629 |
. . . . . . . 8
⊢ ((𝑚 ∈ ( L ‘𝑍) ∧ (𝑋 +s 𝑚) = (𝑋 +s 𝑚)) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑)) |
| 75 | 72, 48, 74 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑)) |
| 76 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑐 = (𝑋 +s 𝑚) → (𝑐 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑚) = (𝑋 +s 𝑑))) |
| 77 | 76 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑐 = (𝑋 +s 𝑚) → (∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑))) |
| 78 | 52, 77 | elab 3663 |
. . . . . . 7
⊢ ((𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑚) = (𝑋 +s 𝑑)) |
| 79 | 75, 78 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)}) |
| 80 | | elun2 4163 |
. . . . . 6
⊢ ((𝑋 +s 𝑚) ∈ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑚) ∈ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)})) |
| 81 | 79, 80 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑚) ∈ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑍)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑐 = (𝑋 +s 𝑑)})) |
| 82 | | ovex 7443 |
. . . . . . 7
⊢ (𝑋 +s 𝑍) ∈ V |
| 83 | 82 | snid 4643 |
. . . . . 6
⊢ (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)} |
| 84 | 83 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)}) |
| 85 | 63, 81, 84 | ssltsepcd 27763 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑚) <s (𝑋 +s 𝑍)) |
| 86 | 11, 27, 36, 59, 85 | slttrd 27728 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ No
∧ (( bday ‘𝑚) ∈ ( bday
‘𝑌) ∧
𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍))) → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍)) |
| 87 | 6, 86 | rexlimddv 3148 |
. 2
⊢ (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍)) |
| 88 | 1, 8 | addscomd 27931 |
. 2
⊢ (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌)) |
| 89 | 2, 8 | addscomd 27931 |
. 2
⊢ (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍)) |
| 90 | 87, 88, 89 | 3brtr4d 5156 |
1
⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |