| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addslid | Structured version Visualization version GIF version | ||
| Description: Surreal addition to zero is identity. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| addslid | ⊢ (𝐴 ∈ No → ( 0s +s 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐴 ∈ No → 𝐴 ∈ No ) | |
| 2 | 0sno 27780 | . . . 4 ⊢ 0s ∈ No | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ No → 0s ∈ No ) |
| 4 | 1, 3 | addscomd 27920 | . 2 ⊢ (𝐴 ∈ No → (𝐴 +s 0s ) = ( 0s +s 𝐴)) |
| 5 | addsrid 27917 | . 2 ⊢ (𝐴 ∈ No → (𝐴 +s 0s ) = 𝐴) | |
| 6 | 4, 5 | eqtr3d 2770 | 1 ⊢ (𝐴 ∈ No → ( 0s +s 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 No csur 27588 0s c0s 27776 +s cadds 27912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-no 27591 df-slt 27592 df-bday 27593 df-sslt 27731 df-scut 27733 df-0s 27778 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec2 27902 df-adds 27913 |
| This theorem is referenced by: sltaddpos2d 27965 negsdi 28002 negsval2 28016 subadds 28020 posdifsd 28047 subsge0d 28049 precsexlem11 28165 nnsge1 28281 1n0s 28286 n0p1nns 28306 dfnns2 28307 eucliddivs 28311 peano5uzs 28338 zsoring 28342 1p1e2s 28349 twocut 28356 expsp1 28362 pw2cut 28390 0reno 28409 |
| Copyright terms: Public domain | W3C validator |