Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomodm | Structured version Visualization version GIF version |
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
alrmomodm | ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3071 | . . 3 ⊢ (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) | |
2 | brres 5887 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥))) | |
3 | 2 | elv 3428 | . . . . 5 ⊢ (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) |
4 | resdm 5925 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
5 | 4 | breqd 5081 | . . . . 5 ⊢ (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ 𝑢𝑅𝑥)) |
6 | 3, 5 | bitr3id 284 | . . . 4 ⊢ (Rel 𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥)) |
7 | 6 | mobidv 2549 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥)) |
8 | 1, 7 | syl5bb 282 | . 2 ⊢ (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥)) |
9 | 8 | albidv 1924 | 1 ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∃*wmo 2538 ∃*wrmo 3066 Vcvv 3422 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 |
This theorem is referenced by: inecmo3 36420 |
Copyright terms: Public domain | W3C validator |