| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomodm | Structured version Visualization version GIF version | ||
| Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| alrmomodm | ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3354 | . . 3 ⊢ (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) | |
| 2 | brres 5957 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥))) | |
| 3 | 2 | elv 3452 | . . . . 5 ⊢ (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) |
| 4 | resdm 5997 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
| 5 | 4 | breqd 5118 | . . . . 5 ⊢ (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ 𝑢𝑅𝑥)) |
| 6 | 3, 5 | bitr3id 285 | . . . 4 ⊢ (Rel 𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥)) |
| 7 | 6 | mobidv 2542 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥)) |
| 8 | 1, 7 | bitrid 283 | . 2 ⊢ (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥)) |
| 9 | 8 | albidv 1920 | 1 ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∃*wmo 2531 ∃*wrmo 3353 Vcvv 3447 class class class wbr 5107 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-res 5650 |
| This theorem is referenced by: inecmo3 38343 |
| Copyright terms: Public domain | W3C validator |