Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomodm Structured version   Visualization version   GIF version

Theorem alrmomodm 38317
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
alrmomodm (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Distinct variable groups:   𝑢,𝑅   𝑥,𝑅

Proof of Theorem alrmomodm
StepHypRef Expression
1 df-rmo 3388 . . 3 (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
2 brres 6018 . . . . . 6 (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥)))
32elv 3493 . . . . 5 (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
4 resdm 6057 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
54breqd 5177 . . . . 5 (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥𝑢𝑅𝑥))
63, 5bitr3id 285 . . . 4 (Rel 𝑅 → ((𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥))
76mobidv 2552 . . 3 (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥))
81, 7bitrid 283 . 2 (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥))
98albidv 1919 1 (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2108  ∃*wmo 2541  ∃*wrmo 3387  Vcvv 3488   class class class wbr 5166  dom cdm 5700  cres 5702  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-res 5712
This theorem is referenced by:  inecmo3  38319
  Copyright terms: Public domain W3C validator