Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomodm Structured version   Visualization version   GIF version

Theorem alrmomodm 38341
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
alrmomodm (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Distinct variable groups:   𝑢,𝑅   𝑥,𝑅

Proof of Theorem alrmomodm
StepHypRef Expression
1 df-rmo 3354 . . 3 (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
2 brres 5957 . . . . . 6 (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥)))
32elv 3452 . . . . 5 (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
4 resdm 5997 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
54breqd 5118 . . . . 5 (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥𝑢𝑅𝑥))
63, 5bitr3id 285 . . . 4 (Rel 𝑅 → ((𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥))
76mobidv 2542 . . 3 (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥))
81, 7bitrid 283 . 2 (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥))
98albidv 1920 1 (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  ∃*wmo 2531  ∃*wrmo 3353  Vcvv 3447   class class class wbr 5107  dom cdm 5638  cres 5640  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dm 5648  df-res 5650
This theorem is referenced by:  inecmo3  38343
  Copyright terms: Public domain W3C validator