Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomodm Structured version   Visualization version   GIF version

Theorem alrmomodm 36228
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
alrmomodm (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Distinct variable groups:   𝑢,𝑅   𝑥,𝑅

Proof of Theorem alrmomodm
StepHypRef Expression
1 df-rmo 3069 . . 3 (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
2 brres 5858 . . . . . 6 (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥)))
32elv 3414 . . . . 5 (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
4 resdm 5896 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
54breqd 5064 . . . . 5 (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥𝑢𝑅𝑥))
63, 5bitr3id 288 . . . 4 (Rel 𝑅 → ((𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥))
76mobidv 2548 . . 3 (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥))
81, 7syl5bb 286 . 2 (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥))
98albidv 1928 1 (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541  wcel 2110  ∃*wmo 2537  ∃*wrmo 3064  Vcvv 3408   class class class wbr 5053  dom cdm 5551  cres 5553  Rel wrel 5556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rmo 3069  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-dm 5561  df-res 5563
This theorem is referenced by:  inecmo3  36230
  Copyright terms: Public domain W3C validator