![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomodm | Structured version Visualization version GIF version |
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
alrmomodm | ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3368 | . . 3 ⊢ (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) | |
2 | brres 5978 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥))) | |
3 | 2 | elv 3472 | . . . . 5 ⊢ (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) |
4 | resdm 6016 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
5 | 4 | breqd 5149 | . . . . 5 ⊢ (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ 𝑢𝑅𝑥)) |
6 | 3, 5 | bitr3id 285 | . . . 4 ⊢ (Rel 𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥)) |
7 | 6 | mobidv 2535 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥)) |
8 | 1, 7 | bitrid 283 | . 2 ⊢ (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥)) |
9 | 8 | albidv 1915 | 1 ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 ∈ wcel 2098 ∃*wmo 2524 ∃*wrmo 3367 Vcvv 3466 class class class wbr 5138 dom cdm 5666 ↾ cres 5668 Rel wrel 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rmo 3368 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-dm 5676 df-res 5678 |
This theorem is referenced by: inecmo3 37686 |
Copyright terms: Public domain | W3C validator |