Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alrmomodm Structured version   Visualization version   GIF version

Theorem alrmomodm 37684
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
alrmomodm (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Distinct variable groups:   𝑢,𝑅   𝑥,𝑅

Proof of Theorem alrmomodm
StepHypRef Expression
1 df-rmo 3368 . . 3 (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
2 brres 5978 . . . . . 6 (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥)))
32elv 3472 . . . . 5 (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅𝑢𝑅𝑥))
4 resdm 6016 . . . . . 6 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
54breqd 5149 . . . . 5 (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥𝑢𝑅𝑥))
63, 5bitr3id 285 . . . 4 (Rel 𝑅 → ((𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥))
76mobidv 2535 . . 3 (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥))
81, 7bitrid 283 . 2 (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥))
98albidv 1915 1 (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wcel 2098  ∃*wmo 2524  ∃*wrmo 3367  Vcvv 3466   class class class wbr 5138  dom cdm 5666  cres 5668  Rel wrel 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rmo 3368  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-dm 5676  df-res 5678
This theorem is referenced by:  inecmo3  37686
  Copyright terms: Public domain W3C validator