![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > alrmomodm | Structured version Visualization version GIF version |
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
alrmomodm | ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3069 | . . 3 ⊢ (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) | |
2 | brresALTV 34375 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥))) | |
3 | 2 | elv 34328 | . . . . 5 ⊢ (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ (𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥)) |
4 | resdm 5582 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
5 | 4 | breqd 4797 | . . . . 5 ⊢ (Rel 𝑅 → (𝑢(𝑅 ↾ dom 𝑅)𝑥 ↔ 𝑢𝑅𝑥)) |
6 | 3, 5 | syl5bbr 274 | . . . 4 ⊢ (Rel 𝑅 → ((𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ 𝑢𝑅𝑥)) |
7 | 6 | mobidv 2639 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑢(𝑢 ∈ dom 𝑅 ∧ 𝑢𝑅𝑥) ↔ ∃*𝑢 𝑢𝑅𝑥)) |
8 | 1, 7 | syl5bb 272 | . 2 ⊢ (Rel 𝑅 → (∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∃*𝑢 𝑢𝑅𝑥)) |
9 | 8 | albidv 2001 | 1 ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1629 ∈ wcel 2145 ∃*wmo 2619 ∃*wrmo 3064 Vcvv 3351 class class class wbr 4786 dom cdm 5249 ↾ cres 5251 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rmo 3069 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-dm 5259 df-res 5261 |
This theorem is referenced by: inecmo3 34468 |
Copyright terms: Public domain | W3C validator |