Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineccnvmo2 Structured version   Visualization version   GIF version

Theorem ineccnvmo2 34435
Description: Equivalence of a double universal quantification restricted to the range and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 4-Sep-2021.)
Assertion
Ref Expression
ineccnvmo2 (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
Distinct variable group:   𝑢,𝐹,𝑥,𝑦

Proof of Theorem ineccnvmo2
StepHypRef Expression
1 ineccnvmo 34432 . 2 (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ ∀𝑢∃*𝑥 ∈ ran 𝐹 𝑢𝐹𝑥)
2 alrmomorn 34433 . 2 (∀𝑢∃*𝑥 ∈ ran 𝐹 𝑢𝐹𝑥 ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
31, 2bitri 266 1 (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wo 865  wal 1635   = wceq 1637  ∃*wmo 2633  wral 3095  ∃*wrmo 3098  cin 3765  c0 4113   class class class wbr 4840  ccnv 5307  ran crn 5309  [cec 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-sep 4971  ax-nul 4980  ax-pr 5093
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ral 3100  df-rex 3101  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-nul 4114  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-br 4841  df-opab 4903  df-xp 5314  df-rel 5315  df-cnv 5316  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-ec 7978
This theorem is referenced by:  cossssid5  34531
  Copyright terms: Public domain W3C validator