Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ineccnvmo2 Structured version   Visualization version   GIF version

Theorem ineccnvmo2 36492
Description: Equivalence of a double universal quantification restricted to the range and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 4-Sep-2021.)
Assertion
Ref Expression
ineccnvmo2 (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
Distinct variable group:   𝑢,𝐹,𝑥,𝑦

Proof of Theorem ineccnvmo2
StepHypRef Expression
1 ineccnvmo 36489 . 2 (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ ∀𝑢∃*𝑥 ∈ ran 𝐹 𝑢𝐹𝑥)
2 alrmomorn 36490 . 2 (∀𝑢∃*𝑥 ∈ ran 𝐹 𝑢𝐹𝑥 ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
31, 2bitri 274 1 (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844  wal 1537   = wceq 1539  ∃*wmo 2538  wral 3064  ∃*wrmo 3067  cin 3886  c0 4256   class class class wbr 5074  ccnv 5588  ran crn 5590  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500
This theorem is referenced by:  cossssid5  36589  dffunsALTV5  36798
  Copyright terms: Public domain W3C validator