| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ineccnvmo2 | Structured version Visualization version GIF version | ||
| Description: Equivalence of a double universal quantification restricted to the range and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ineccnvmo2 | ⊢ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineccnvmo 38393 | . 2 ⊢ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ↔ ∀𝑢∃*𝑥 ∈ ran 𝐹 𝑢𝐹𝑥) | |
| 2 | alrmomorn 38394 | . 2 ⊢ (∀𝑢∃*𝑥 ∈ ran 𝐹 𝑢𝐹𝑥 ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∀wal 1539 = wceq 1541 ∃*wmo 2533 ∀wral 3047 ∃*wrmo 3345 ∩ cin 3896 ∅c0 4280 class class class wbr 5089 ◡ccnv 5613 ran crn 5615 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 |
| This theorem is referenced by: cossssid5 38516 dffunsALTV5 38733 |
| Copyright terms: Public domain | W3C validator |