Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem21 Structured version   Visualization version   GIF version

Theorem fourierdlem21 41790
Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem21.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem21.c 𝐶 = (-π(,)π)
fourierdlem21.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem21.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem21.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fourierdlem21 (𝜑 → (((𝐵𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Distinct variable groups:   𝐶,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)

Proof of Theorem fourierdlem21
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11708 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2 fourierdlem21.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
32adantr 473 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
4 ioossre 12607 . . . . . . . . . . . 12 (-π(,)π) ⊆ ℝ
5 id 22 . . . . . . . . . . . . 13 (𝑥𝐶𝑥𝐶)
6 fourierdlem21.c . . . . . . . . . . . . 13 𝐶 = (-π(,)π)
75, 6syl6eleq 2870 . . . . . . . . . . . 12 (𝑥𝐶𝑥 ∈ (-π(,)π))
84, 7sseldi 3852 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ ℝ)
98adantl 474 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
103, 9ffvelrnd 6671 . . . . . . . . 9 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
1110adantlr 702 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
12 nn0re 11710 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1312adantr 473 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
148adantl 474 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1513, 14remulcld 10462 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1615resincld 15346 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
1716adantll 701 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
1811, 17remulcld 10462 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
19 ioombl 23859 . . . . . . . . . . . 12 (-π(,)π) ∈ dom vol
206, 19eqeltri 2856 . . . . . . . . . . 11 𝐶 ∈ dom vol
2120a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
22 eqidd 2773 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
23 eqidd 2773 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2421, 17, 11, 22, 23offval2 7238 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2517recnd 10460 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
2611recnd 10460 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2725, 26mulcomd 10453 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
2827mpteq2dva 5016 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
2924, 28eqtr2d 2809 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))))
30 sincn 24725 . . . . . . . . . . . 12 sin ∈ (ℂ–cn→ℂ)
3130a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → sin ∈ (ℂ–cn→ℂ))
326, 4eqsstri 3887 . . . . . . . . . . . . . . . 16 𝐶 ⊆ ℝ
33 ax-resscn 10384 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
3432, 33sstri 3863 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℂ
3534a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3612recnd 10460 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
37 ssid 3875 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3935, 36, 38constcncfg 41530 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
4035, 38idcncfg 41531 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4139, 40mulcncf 23740 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4241adantl 474 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4331, 42cncfmpt1f 23214 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 23953 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
4520, 43, 44sylancr 578 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
462feqmptd 6556 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4746reseq1d 5687 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
48 resmpt 5744 . . . . . . . . . . . . 13 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
4932, 48mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5047, 49eqtr2d 2809 . . . . . . . . . . 11 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
51 fourierdlem21.fibl . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5250, 51eqeltrd 2860 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5352adantr 473 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
54 1re 10431 . . . . . . . . . . 11 1 ∈ ℝ
55 simpr 477 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
56 nfv 1873 . . . . . . . . . . . . . . . . 17 𝑥 𝑛 ∈ ℕ0
57 nfmpt1 5019 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
5857nfdm 5659 . . . . . . . . . . . . . . . . . 18 𝑥dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
5958nfcri 2920 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
6056, 59nfan 1862 . . . . . . . . . . . . . . . 16 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
6116ex 405 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
6261adantr 473 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
6360, 62ralrimi 3160 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
64 dmmptg 5929 . . . . . . . . . . . . . . 15 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
6563, 64syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
6655, 65eleqtrd 2862 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
67 eqidd 2773 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
68 oveq2 6978 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
6968fveq2d 6497 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
7069adantl 474 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
71 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7212adantr 473 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7332, 71sseldi 3852 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7472, 73remulcld 10462 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7574resincld 15346 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
7667, 70, 71, 75fvmptd 6595 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
7776fveq2d 6497 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
78 abssinbd 40937 . . . . . . . . . . . . . . 15 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
7974, 78syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
8077, 79eqbrtrd 4945 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8166, 80syldan 582 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8281ralrimiva 3126 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
83 breq2 4927 . . . . . . . . . . . . 13 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8483ralbidv 3141 . . . . . . . . . . . 12 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584rspcev 3529 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8654, 82, 85sylancr 578 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8786adantl 474 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
88 bddmulibl 24132 . . . . . . . . 9 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
8945, 53, 87, 88syl3anc 1351 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘𝑓 · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9029, 89eqeltrd 2860 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9118, 90itgrecl 24091 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
921, 91sylan2 583 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 24737 . . . . . 6 π ∈ ℝ
9493a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
95 0re 10433 . . . . . . 7 0 ∈ ℝ
96 pipos 24739 . . . . . . 7 0 < π
9795, 96gtneii 10544 . . . . . 6 π ≠ 0
9897a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
9992, 94, 98redivcld 11261 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem21.b . . . 4 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 6695 . . 3 (𝜑𝐵:ℕ⟶ℝ)
102 fourierdlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
103101, 102ffvelrnd 6671 . 2 (𝜑 → (𝐵𝑁) ∈ ℝ)
104102nnnn0d 11760 . . 3 (𝜑𝑁 ∈ ℕ0)
105 eleq1 2847 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
106105anbi2d 619 . . . . . 6 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑𝑁 ∈ ℕ0)))
107 simpl 475 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑥𝐶) → 𝑛 = 𝑁)
108107oveq1d 6985 . . . . . . . . . 10 ((𝑛 = 𝑁𝑥𝐶) → (𝑛 · 𝑥) = (𝑁 · 𝑥))
109108fveq2d 6497 . . . . . . . . 9 ((𝑛 = 𝑁𝑥𝐶) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑁 · 𝑥)))
110109oveq2d 6986 . . . . . . . 8 ((𝑛 = 𝑁𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))))
111110mpteq2dva 5016 . . . . . . 7 (𝑛 = 𝑁 → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))))
112111eleq1d 2844 . . . . . 6 (𝑛 = 𝑁 → ((𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1 ↔ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1))
113106, 112imbi12d 337 . . . . 5 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1) ↔ ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)))
114113, 90vtoclg 3480 . . . 4 (𝑁 ∈ ℕ0 → ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1))
115114anabsi7 658 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
116104, 115mpdan 674 . 2 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
117102ancli 541 . . 3 (𝜑 → (𝜑𝑁 ∈ ℕ))
118 eleq1 2847 . . . . . 6 (𝑛 = 𝑁 → (𝑛 ∈ ℕ ↔ 𝑁 ∈ ℕ))
119118anbi2d 619 . . . . 5 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑁 ∈ ℕ)))
120110itgeq2dv 24075 . . . . . 6 (𝑛 = 𝑁 → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥)
121120eleq1d 2844 . . . . 5 (𝑛 = 𝑁 → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
122119, 121imbi12d 337 . . . 4 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑁 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)))
123122, 92vtoclg 3480 . . 3 (𝑁 ∈ ℕ → ((𝜑𝑁 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
124102, 117, 123sylc 65 . 2 (𝜑 → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)
125103, 116, 124jca31 507 1 (𝜑 → (((𝐵𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  wss 3825   class class class wbr 4923  cmpt 5002  dom cdm 5400  cres 5402  wf 6178  cfv 6182  (class class class)co 6970  𝑓 cof 7219  cc 10325  cr 10326  0cc0 10327  1c1 10328   · cmul 10332  cle 10467  -cneg 10663   / cdiv 11090  cn 11431  0cn0 11700  (,)cioo 12547  abscabs 14444  sincsin 15267  πcpi 15270  cnccncf 23177  volcvol 23757  MblFncmbf 23908  𝐿1cibl 23911  citg 23912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cc 9647  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-disj 4892  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-ofr 7222  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-omul 7902  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-dju 9116  df-card 9154  df-acn 9157  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ioc 12552  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-fac 13442  df-bc 13471  df-hash 13499  df-shft 14277  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-limsup 14679  df-clim 14696  df-rlim 14697  df-sum 14894  df-ef 15271  df-sin 15273  df-cos 15274  df-pi 15276  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-fbas 20234  df-fg 20235  df-cnfld 20238  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cld 21321  df-ntr 21322  df-cls 21323  df-nei 21400  df-lp 21438  df-perf 21439  df-cn 21529  df-cnp 21530  df-haus 21617  df-cmp 21689  df-tx 21864  df-hmeo 22057  df-fil 22148  df-fm 22240  df-flim 22241  df-flf 22242  df-xms 22623  df-ms 22624  df-tms 22625  df-cncf 23179  df-ovol 23758  df-vol 23759  df-mbf 23913  df-itg1 23914  df-itg2 23915  df-ibl 23916  df-itg 23917  df-0p 23964  df-limc 24157  df-dv 24158
This theorem is referenced by:  fourierdlem83  41851  fourierdlem112  41880
  Copyright terms: Public domain W3C validator