Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem21 Structured version   Visualization version   GIF version

Theorem fourierdlem21 46133
Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem21.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem21.c 𝐶 = (-π(,)π)
fourierdlem21.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem21.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem21.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fourierdlem21 (𝜑 → (((𝐵𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Distinct variable groups:   𝐶,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)

Proof of Theorem fourierdlem21
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12456 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2 fourierdlem21.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
32adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
4 ioossre 13375 . . . . . . . . . . . 12 (-π(,)π) ⊆ ℝ
5 id 22 . . . . . . . . . . . . 13 (𝑥𝐶𝑥𝐶)
6 fourierdlem21.c . . . . . . . . . . . . 13 𝐶 = (-π(,)π)
75, 6eleqtrdi 2839 . . . . . . . . . . . 12 (𝑥𝐶𝑥 ∈ (-π(,)π))
84, 7sselid 3947 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ ℝ)
98adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
103, 9ffvelcdmd 7060 . . . . . . . . 9 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
1110adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
12 nn0re 12458 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1312adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
148adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1513, 14remulcld 11211 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1615resincld 16118 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
1716adantll 714 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
1811, 17remulcld 11211 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
19 ioombl 25473 . . . . . . . . . . . 12 (-π(,)π) ∈ dom vol
206, 19eqeltri 2825 . . . . . . . . . . 11 𝐶 ∈ dom vol
2120a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
22 eqidd 2731 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
23 eqidd 2731 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2421, 17, 11, 22, 23offval2 7676 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2517recnd 11209 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
2611recnd 11209 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2725, 26mulcomd 11202 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
2827mpteq2dva 5203 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
2924, 28eqtr2d 2766 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
30 sincn 26361 . . . . . . . . . . . 12 sin ∈ (ℂ–cn→ℂ)
3130a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → sin ∈ (ℂ–cn→ℂ))
326, 4eqsstri 3996 . . . . . . . . . . . . . . . 16 𝐶 ⊆ ℝ
33 ax-resscn 11132 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
3432, 33sstri 3959 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℂ
3534a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3612recnd 11209 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
37 ssid 3972 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3935, 36, 38constcncfg 45877 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
4035, 38idcncfg 45878 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4139, 40mulcncf 25353 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4241adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4331, 42cncfmpt1f 24814 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 25567 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
4520, 43, 44sylancr 587 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
462feqmptd 6932 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4746reseq1d 5952 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
48 resmpt 6011 . . . . . . . . . . . . 13 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
4932, 48mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5047, 49eqtr2d 2766 . . . . . . . . . . 11 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
51 fourierdlem21.fibl . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5250, 51eqeltrd 2829 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5352adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
54 1re 11181 . . . . . . . . . . 11 1 ∈ ℝ
55 simpr 484 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
56 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥 𝑛 ∈ ℕ0
57 nfmpt1 5209 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
5857nfdm 5918 . . . . . . . . . . . . . . . . . 18 𝑥dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
5958nfcri 2884 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
6056, 59nfan 1899 . . . . . . . . . . . . . . . 16 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
6116ex 412 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
6261adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
6360, 62ralrimi 3236 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
64 dmmptg 6218 . . . . . . . . . . . . . . 15 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
6563, 64syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
6655, 65eleqtrd 2831 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
67 eqidd 2731 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
68 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
6968fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
7069adantl 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
71 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7212adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7332, 71sselid 3947 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7472, 73remulcld 11211 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7574resincld 16118 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
7667, 70, 71, 75fvmptd 6978 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
7776fveq2d 6865 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
78 abssinbd 45300 . . . . . . . . . . . . . . 15 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
7974, 78syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
8077, 79eqbrtrd 5132 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8166, 80syldan 591 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8281ralrimiva 3126 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
83 breq2 5114 . . . . . . . . . . . . 13 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8483ralbidv 3157 . . . . . . . . . . . 12 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584rspcev 3591 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8654, 82, 85sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8786adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
88 bddmulibl 25747 . . . . . . . . 9 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
8945, 53, 87, 88syl3anc 1373 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9029, 89eqeltrd 2829 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9118, 90itgrecl 25706 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
921, 91sylan2 593 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 26373 . . . . . 6 π ∈ ℝ
9493a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
95 0re 11183 . . . . . . 7 0 ∈ ℝ
96 pipos 26375 . . . . . . 7 0 < π
9795, 96gtneii 11293 . . . . . 6 π ≠ 0
9897a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
9992, 94, 98redivcld 12017 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem21.b . . . 4 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 7089 . . 3 (𝜑𝐵:ℕ⟶ℝ)
102 fourierdlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
103101, 102ffvelcdmd 7060 . 2 (𝜑 → (𝐵𝑁) ∈ ℝ)
104102nnnn0d 12510 . . 3 (𝜑𝑁 ∈ ℕ0)
105 eleq1 2817 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
106105anbi2d 630 . . . . . 6 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑𝑁 ∈ ℕ0)))
107 simpl 482 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑥𝐶) → 𝑛 = 𝑁)
108107oveq1d 7405 . . . . . . . . . 10 ((𝑛 = 𝑁𝑥𝐶) → (𝑛 · 𝑥) = (𝑁 · 𝑥))
109108fveq2d 6865 . . . . . . . . 9 ((𝑛 = 𝑁𝑥𝐶) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑁 · 𝑥)))
110109oveq2d 7406 . . . . . . . 8 ((𝑛 = 𝑁𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))))
111110mpteq2dva 5203 . . . . . . 7 (𝑛 = 𝑁 → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))))
112111eleq1d 2814 . . . . . 6 (𝑛 = 𝑁 → ((𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1 ↔ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1))
113106, 112imbi12d 344 . . . . 5 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1) ↔ ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)))
114113, 90vtoclg 3523 . . . 4 (𝑁 ∈ ℕ0 → ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1))
115114anabsi7 671 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
116104, 115mpdan 687 . 2 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
117102ancli 548 . . 3 (𝜑 → (𝜑𝑁 ∈ ℕ))
118 eleq1 2817 . . . . . 6 (𝑛 = 𝑁 → (𝑛 ∈ ℕ ↔ 𝑁 ∈ ℕ))
119118anbi2d 630 . . . . 5 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑁 ∈ ℕ)))
120110itgeq2dv 25690 . . . . . 6 (𝑛 = 𝑁 → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥)
121120eleq1d 2814 . . . . 5 (𝑛 = 𝑁 → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
122119, 121imbi12d 344 . . . 4 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑁 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)))
123122, 92vtoclg 3523 . . 3 (𝑁 ∈ ℕ → ((𝜑𝑁 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
124102, 117, 123sylc 65 . 2 (𝜑 → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)
125103, 116, 124jca31 514 1 (𝜑 → (((𝐵𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  cle 11216  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  (,)cioo 13313  abscabs 15207  sincsin 16036  πcpi 16039  cnccncf 24776  volcvol 25371  MblFncmbf 25522  𝐿1cibl 25525  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  fourierdlem83  46194  fourierdlem112  46223
  Copyright terms: Public domain W3C validator