Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem21 Structured version   Visualization version   GIF version

Theorem fourierdlem21 44359
Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem21.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem21.c 𝐶 = (-π(,)π)
fourierdlem21.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem21.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem21.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fourierdlem21 (𝜑 → (((𝐵𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Distinct variable groups:   𝐶,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)

Proof of Theorem fourierdlem21
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12420 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2 fourierdlem21.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
32adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
4 ioossre 13325 . . . . . . . . . . . 12 (-π(,)π) ⊆ ℝ
5 id 22 . . . . . . . . . . . . 13 (𝑥𝐶𝑥𝐶)
6 fourierdlem21.c . . . . . . . . . . . . 13 𝐶 = (-π(,)π)
75, 6eleqtrdi 2848 . . . . . . . . . . . 12 (𝑥𝐶𝑥 ∈ (-π(,)π))
84, 7sselid 3942 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ ℝ)
98adantl 482 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
103, 9ffvelcdmd 7036 . . . . . . . . 9 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
1110adantlr 713 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
12 nn0re 12422 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1312adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
148adantl 482 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1513, 14remulcld 11185 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1615resincld 16025 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
1716adantll 712 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
1811, 17remulcld 11185 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
19 ioombl 24929 . . . . . . . . . . . 12 (-π(,)π) ∈ dom vol
206, 19eqeltri 2834 . . . . . . . . . . 11 𝐶 ∈ dom vol
2120a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
22 eqidd 2737 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
23 eqidd 2737 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2421, 17, 11, 22, 23offval2 7637 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2517recnd 11183 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
2611recnd 11183 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2725, 26mulcomd 11176 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
2827mpteq2dva 5205 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
2924, 28eqtr2d 2777 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
30 sincn 25803 . . . . . . . . . . . 12 sin ∈ (ℂ–cn→ℂ)
3130a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → sin ∈ (ℂ–cn→ℂ))
326, 4eqsstri 3978 . . . . . . . . . . . . . . . 16 𝐶 ⊆ ℝ
33 ax-resscn 11108 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
3432, 33sstri 3953 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℂ
3534a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3612recnd 11183 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
37 ssid 3966 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3935, 36, 38constcncfg 44103 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
4035, 38idcncfg 44104 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4139, 40mulcncf 24810 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4241adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4331, 42cncfmpt1f 24277 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 25023 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
4520, 43, 44sylancr 587 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
462feqmptd 6910 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4746reseq1d 5936 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
48 resmpt 5991 . . . . . . . . . . . . 13 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
4932, 48mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5047, 49eqtr2d 2777 . . . . . . . . . . 11 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
51 fourierdlem21.fibl . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5250, 51eqeltrd 2838 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5352adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
54 1re 11155 . . . . . . . . . . 11 1 ∈ ℝ
55 simpr 485 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
56 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑥 𝑛 ∈ ℕ0
57 nfmpt1 5213 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
5857nfdm 5906 . . . . . . . . . . . . . . . . . 18 𝑥dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
5958nfcri 2894 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
6056, 59nfan 1902 . . . . . . . . . . . . . . . 16 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
6116ex 413 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
6261adantr 481 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
6360, 62ralrimi 3240 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
64 dmmptg 6194 . . . . . . . . . . . . . . 15 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
6563, 64syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
6655, 65eleqtrd 2840 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
67 eqidd 2737 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
68 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
6968fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
7069adantl 482 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
71 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7212adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7332, 71sselid 3942 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7472, 73remulcld 11185 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7574resincld 16025 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
7667, 70, 71, 75fvmptd 6955 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
7776fveq2d 6846 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
78 abssinbd 43519 . . . . . . . . . . . . . . 15 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
7974, 78syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
8077, 79eqbrtrd 5127 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8166, 80syldan 591 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8281ralrimiva 3143 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
83 breq2 5109 . . . . . . . . . . . . 13 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8483ralbidv 3174 . . . . . . . . . . . 12 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584rspcev 3581 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8654, 82, 85sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8786adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
88 bddmulibl 25203 . . . . . . . . 9 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
8945, 53, 87, 88syl3anc 1371 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9029, 89eqeltrd 2838 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9118, 90itgrecl 25162 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
921, 91sylan2 593 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 25815 . . . . . 6 π ∈ ℝ
9493a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
95 0re 11157 . . . . . . 7 0 ∈ ℝ
96 pipos 25817 . . . . . . 7 0 < π
9795, 96gtneii 11267 . . . . . 6 π ≠ 0
9897a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
9992, 94, 98redivcld 11983 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem21.b . . . 4 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 7062 . . 3 (𝜑𝐵:ℕ⟶ℝ)
102 fourierdlem21.n . . 3 (𝜑𝑁 ∈ ℕ)
103101, 102ffvelcdmd 7036 . 2 (𝜑 → (𝐵𝑁) ∈ ℝ)
104102nnnn0d 12473 . . 3 (𝜑𝑁 ∈ ℕ0)
105 eleq1 2825 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
106105anbi2d 629 . . . . . 6 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑𝑁 ∈ ℕ0)))
107 simpl 483 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑥𝐶) → 𝑛 = 𝑁)
108107oveq1d 7372 . . . . . . . . . 10 ((𝑛 = 𝑁𝑥𝐶) → (𝑛 · 𝑥) = (𝑁 · 𝑥))
109108fveq2d 6846 . . . . . . . . 9 ((𝑛 = 𝑁𝑥𝐶) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑁 · 𝑥)))
110109oveq2d 7373 . . . . . . . 8 ((𝑛 = 𝑁𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (sin‘(𝑁 · 𝑥))))
111110mpteq2dva 5205 . . . . . . 7 (𝑛 = 𝑁 → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))))
112111eleq1d 2822 . . . . . 6 (𝑛 = 𝑁 → ((𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1 ↔ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1))
113106, 112imbi12d 344 . . . . 5 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1) ↔ ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)))
114113, 90vtoclg 3525 . . . 4 (𝑁 ∈ ℕ0 → ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1))
115114anabsi7 669 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
116104, 115mpdan 685 . 2 (𝜑 → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1)
117102ancli 549 . . 3 (𝜑 → (𝜑𝑁 ∈ ℕ))
118 eleq1 2825 . . . . . 6 (𝑛 = 𝑁 → (𝑛 ∈ ℕ ↔ 𝑁 ∈ ℕ))
119118anbi2d 629 . . . . 5 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑁 ∈ ℕ)))
120110itgeq2dv 25146 . . . . . 6 (𝑛 = 𝑁 → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥)
121120eleq1d 2822 . . . . 5 (𝑛 = 𝑁 → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
122119, 121imbi12d 344 . . . 4 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑁 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)))
123122, 92vtoclg 3525 . . 3 (𝑁 ∈ ℕ → ((𝜑𝑁 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
124102, 117, 123sylc 65 . 2 (𝜑 → ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)
125103, 116, 124jca31 515 1 (𝜑 → (((𝐵𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑁 · 𝑥)))) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  cle 11190  -cneg 11386   / cdiv 11812  cn 12153  0cn0 12413  (,)cioo 13264  abscabs 15119  sincsin 15946  πcpi 15949  cnccncf 24239  volcvol 24827  MblFncmbf 24978  𝐿1cibl 24981  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem83  44420  fourierdlem112  44449
  Copyright terms: Public domain W3C validator