Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flcidc Structured version   Visualization version   GIF version

Theorem flcidc 40915
Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Hypotheses
Ref Expression
flcidc.f (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
flcidc.s (𝜑𝑆 ∈ Fin)
flcidc.k (𝜑𝐾𝑆)
flcidc.b ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
flcidc (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐹   𝑆,𝑖,𝑗   𝑖,𝐾,𝑗   𝐵,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝐹(𝑗)

Proof of Theorem flcidc
StepHypRef Expression
1 flcidc.f . . . . . . . . 9 (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
21fveq1d 6758 . . . . . . . 8 (𝜑 → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
4 flcidc.k . . . . . . . . . 10 (𝜑𝐾𝑆)
54snssd 4739 . . . . . . . . 9 (𝜑 → {𝐾} ⊆ 𝑆)
65sselda 3917 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐾}) → 𝑖𝑆)
7 eqeq1 2742 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝐾𝑖 = 𝐾))
87ifbid 4479 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = 𝐾, 1, 0) = if(𝑖 = 𝐾, 1, 0))
9 eqid 2738 . . . . . . . . 9 (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)) = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))
10 1ex 10902 . . . . . . . . . 10 1 ∈ V
11 c0ex 10900 . . . . . . . . . 10 0 ∈ V
1210, 11ifex 4506 . . . . . . . . 9 if(𝑖 = 𝐾, 1, 0) ∈ V
138, 9, 12fvmpt 6857 . . . . . . . 8 (𝑖𝑆 → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
146, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
153, 14eqtrd 2778 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
16 elsni 4575 . . . . . . . 8 (𝑖 ∈ {𝐾} → 𝑖 = 𝐾)
1716iftrued 4464 . . . . . . 7 (𝑖 ∈ {𝐾} → if(𝑖 = 𝐾, 1, 0) = 1)
1817adantl 481 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 1)
1915, 18eqtrd 2778 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = 1)
2019oveq1d 7270 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = (1 · 𝐵))
21 flcidc.b . . . . . 6 ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
226, 21syldan 590 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → 𝐵 ∈ ℂ)
2322mulid2d 10924 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (1 · 𝐵) = 𝐵)
2420, 23eqtrd 2778 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = 𝐵)
2524sumeq2dv 15343 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖 ∈ {𝐾}𝐵)
26 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
27 0cn 10898 . . . . . 6 0 ∈ ℂ
2826, 27ifcli 4503 . . . . 5 if(𝑖 = 𝐾, 1, 0) ∈ ℂ
2915, 28eqeltrdi 2847 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) ∈ ℂ)
3029, 22mulcld 10926 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) ∈ ℂ)
312adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32 eldifi 4057 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → 𝑖𝑆)
3332adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝑖𝑆)
3433, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
3531, 34eqtrd 2778 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
36 eldifn 4058 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 ∈ {𝐾})
37 velsn 4574 . . . . . . . . 9 (𝑖 ∈ {𝐾} ↔ 𝑖 = 𝐾)
3836, 37sylnib 327 . . . . . . . 8 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 = 𝐾)
3938iffalsed 4467 . . . . . . 7 (𝑖 ∈ (𝑆 ∖ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 0)
4039adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → if(𝑖 = 𝐾, 1, 0) = 0)
4135, 40eqtrd 2778 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = 0)
4241oveq1d 7270 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = (0 · 𝐵))
4333, 21syldan 590 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝐵 ∈ ℂ)
4443mul02d 11103 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (0 · 𝐵) = 0)
4542, 44eqtrd 2778 . . 3 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = 0)
46 flcidc.s . . 3 (𝜑𝑆 ∈ Fin)
475, 30, 45, 46fsumss 15365 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖𝑆 ((𝐹𝑖) · 𝐵))
48 eleq1 2826 . . . . . . . 8 (𝑗 = 𝐾 → (𝑗𝑆𝐾𝑆))
4948anbi2d 628 . . . . . . 7 (𝑗 = 𝐾 → ((𝜑𝑗𝑆) ↔ (𝜑𝐾𝑆)))
50 csbeq1 3831 . . . . . . . 8 (𝑗 = 𝐾𝑗 / 𝑖𝐵 = 𝐾 / 𝑖𝐵)
5150eleq1d 2823 . . . . . . 7 (𝑗 = 𝐾 → (𝑗 / 𝑖𝐵 ∈ ℂ ↔ 𝐾 / 𝑖𝐵 ∈ ℂ))
5249, 51imbi12d 344 . . . . . 6 (𝑗 = 𝐾 → (((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ) ↔ ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)))
53 nfv 1918 . . . . . . . 8 𝑖(𝜑𝑗𝑆)
54 nfcsb1v 3853 . . . . . . . . 9 𝑖𝑗 / 𝑖𝐵
5554nfel1 2922 . . . . . . . 8 𝑖𝑗 / 𝑖𝐵 ∈ ℂ
5653, 55nfim 1900 . . . . . . 7 𝑖((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
57 eleq1 2826 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑖𝑆𝑗𝑆))
5857anbi2d 628 . . . . . . . 8 (𝑖 = 𝑗 → ((𝜑𝑖𝑆) ↔ (𝜑𝑗𝑆)))
59 csbeq1a 3842 . . . . . . . . 9 (𝑖 = 𝑗𝐵 = 𝑗 / 𝑖𝐵)
6059eleq1d 2823 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑖𝐵 ∈ ℂ))
6158, 60imbi12d 344 . . . . . . 7 (𝑖 = 𝑗 → (((𝜑𝑖𝑆) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)))
6256, 61, 21chvarfv 2236 . . . . . 6 ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
6352, 62vtoclg 3495 . . . . 5 (𝐾𝑆 → ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ))
6463anabsi7 667 . . . 4 ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)
654, 64mpdan 683 . . 3 (𝜑𝐾 / 𝑖𝐵 ∈ ℂ)
66 sumsns 15390 . . 3 ((𝐾𝑆𝐾 / 𝑖𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
674, 65, 66syl2anc 583 . 2 (𝜑 → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
6825, 47, 673eqtr3d 2786 1 (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  csb 3828  cdif 3880  ifcif 4456  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   · cmul 10807  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator