Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flcidc Structured version   Visualization version   GIF version

Theorem flcidc 43159
Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Hypotheses
Ref Expression
flcidc.f (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
flcidc.s (𝜑𝑆 ∈ Fin)
flcidc.k (𝜑𝐾𝑆)
flcidc.b ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
flcidc (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐹   𝑆,𝑖,𝑗   𝑖,𝐾,𝑗   𝐵,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝐹(𝑗)

Proof of Theorem flcidc
StepHypRef Expression
1 flcidc.f . . . . . . . . 9 (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
21fveq1d 6909 . . . . . . . 8 (𝜑 → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
4 flcidc.k . . . . . . . . . 10 (𝜑𝐾𝑆)
54snssd 4814 . . . . . . . . 9 (𝜑 → {𝐾} ⊆ 𝑆)
65sselda 3995 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐾}) → 𝑖𝑆)
7 eqeq1 2739 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝐾𝑖 = 𝐾))
87ifbid 4554 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = 𝐾, 1, 0) = if(𝑖 = 𝐾, 1, 0))
9 eqid 2735 . . . . . . . . 9 (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)) = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))
10 1ex 11255 . . . . . . . . . 10 1 ∈ V
11 c0ex 11253 . . . . . . . . . 10 0 ∈ V
1210, 11ifex 4581 . . . . . . . . 9 if(𝑖 = 𝐾, 1, 0) ∈ V
138, 9, 12fvmpt 7016 . . . . . . . 8 (𝑖𝑆 → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
146, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
153, 14eqtrd 2775 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
16 elsni 4648 . . . . . . . 8 (𝑖 ∈ {𝐾} → 𝑖 = 𝐾)
1716iftrued 4539 . . . . . . 7 (𝑖 ∈ {𝐾} → if(𝑖 = 𝐾, 1, 0) = 1)
1817adantl 481 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 1)
1915, 18eqtrd 2775 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = 1)
2019oveq1d 7446 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = (1 · 𝐵))
21 flcidc.b . . . . . 6 ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
226, 21syldan 591 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → 𝐵 ∈ ℂ)
2322mullidd 11277 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (1 · 𝐵) = 𝐵)
2420, 23eqtrd 2775 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = 𝐵)
2524sumeq2dv 15735 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖 ∈ {𝐾}𝐵)
26 ax-1cn 11211 . . . . . 6 1 ∈ ℂ
27 0cn 11251 . . . . . 6 0 ∈ ℂ
2826, 27ifcli 4578 . . . . 5 if(𝑖 = 𝐾, 1, 0) ∈ ℂ
2915, 28eqeltrdi 2847 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) ∈ ℂ)
3029, 22mulcld 11279 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) ∈ ℂ)
312adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32 eldifi 4141 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → 𝑖𝑆)
3332adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝑖𝑆)
3433, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
3531, 34eqtrd 2775 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
36 eldifn 4142 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 ∈ {𝐾})
37 velsn 4647 . . . . . . . . 9 (𝑖 ∈ {𝐾} ↔ 𝑖 = 𝐾)
3836, 37sylnib 328 . . . . . . . 8 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 = 𝐾)
3938iffalsed 4542 . . . . . . 7 (𝑖 ∈ (𝑆 ∖ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 0)
4039adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → if(𝑖 = 𝐾, 1, 0) = 0)
4135, 40eqtrd 2775 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = 0)
4241oveq1d 7446 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = (0 · 𝐵))
4333, 21syldan 591 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝐵 ∈ ℂ)
4443mul02d 11457 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (0 · 𝐵) = 0)
4542, 44eqtrd 2775 . . 3 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = 0)
46 flcidc.s . . 3 (𝜑𝑆 ∈ Fin)
475, 30, 45, 46fsumss 15758 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖𝑆 ((𝐹𝑖) · 𝐵))
48 eleq1 2827 . . . . . . . 8 (𝑗 = 𝐾 → (𝑗𝑆𝐾𝑆))
4948anbi2d 630 . . . . . . 7 (𝑗 = 𝐾 → ((𝜑𝑗𝑆) ↔ (𝜑𝐾𝑆)))
50 csbeq1 3911 . . . . . . . 8 (𝑗 = 𝐾𝑗 / 𝑖𝐵 = 𝐾 / 𝑖𝐵)
5150eleq1d 2824 . . . . . . 7 (𝑗 = 𝐾 → (𝑗 / 𝑖𝐵 ∈ ℂ ↔ 𝐾 / 𝑖𝐵 ∈ ℂ))
5249, 51imbi12d 344 . . . . . 6 (𝑗 = 𝐾 → (((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ) ↔ ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)))
53 nfv 1912 . . . . . . . 8 𝑖(𝜑𝑗𝑆)
54 nfcsb1v 3933 . . . . . . . . 9 𝑖𝑗 / 𝑖𝐵
5554nfel1 2920 . . . . . . . 8 𝑖𝑗 / 𝑖𝐵 ∈ ℂ
5653, 55nfim 1894 . . . . . . 7 𝑖((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
57 eleq1 2827 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑖𝑆𝑗𝑆))
5857anbi2d 630 . . . . . . . 8 (𝑖 = 𝑗 → ((𝜑𝑖𝑆) ↔ (𝜑𝑗𝑆)))
59 csbeq1a 3922 . . . . . . . . 9 (𝑖 = 𝑗𝐵 = 𝑗 / 𝑖𝐵)
6059eleq1d 2824 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑖𝐵 ∈ ℂ))
6158, 60imbi12d 344 . . . . . . 7 (𝑖 = 𝑗 → (((𝜑𝑖𝑆) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)))
6256, 61, 21chvarfv 2238 . . . . . 6 ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
6352, 62vtoclg 3554 . . . . 5 (𝐾𝑆 → ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ))
6463anabsi7 671 . . . 4 ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)
654, 64mpdan 687 . . 3 (𝜑𝐾 / 𝑖𝐵 ∈ ℂ)
66 sumsns 15783 . . 3 ((𝐾𝑆𝐾 / 𝑖𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
674, 65, 66syl2anc 584 . 2 (𝜑 → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
6825, 47, 673eqtr3d 2783 1 (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  csb 3908  cdif 3960  ifcif 4531  {csn 4631  cmpt 5231  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  0cc0 11153  1c1 11154   · cmul 11158  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator