Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flcidc Structured version   Visualization version   GIF version

Theorem flcidc 39767
Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Hypotheses
Ref Expression
flcidc.f (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
flcidc.s (𝜑𝑆 ∈ Fin)
flcidc.k (𝜑𝐾𝑆)
flcidc.b ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
flcidc (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐹   𝑆,𝑖,𝑗   𝑖,𝐾,𝑗   𝐵,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝐹(𝑗)

Proof of Theorem flcidc
StepHypRef Expression
1 flcidc.f . . . . . . . . 9 (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
21fveq1d 6667 . . . . . . . 8 (𝜑 → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
4 flcidc.k . . . . . . . . . 10 (𝜑𝐾𝑆)
54snssd 4736 . . . . . . . . 9 (𝜑 → {𝐾} ⊆ 𝑆)
65sselda 3967 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐾}) → 𝑖𝑆)
7 eqeq1 2825 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝐾𝑖 = 𝐾))
87ifbid 4489 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = 𝐾, 1, 0) = if(𝑖 = 𝐾, 1, 0))
9 eqid 2821 . . . . . . . . 9 (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)) = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))
10 1ex 10631 . . . . . . . . . 10 1 ∈ V
11 c0ex 10629 . . . . . . . . . 10 0 ∈ V
1210, 11ifex 4515 . . . . . . . . 9 if(𝑖 = 𝐾, 1, 0) ∈ V
138, 9, 12fvmpt 6763 . . . . . . . 8 (𝑖𝑆 → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
146, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
153, 14eqtrd 2856 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
16 elsni 4578 . . . . . . . 8 (𝑖 ∈ {𝐾} → 𝑖 = 𝐾)
1716iftrued 4475 . . . . . . 7 (𝑖 ∈ {𝐾} → if(𝑖 = 𝐾, 1, 0) = 1)
1817adantl 484 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 1)
1915, 18eqtrd 2856 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = 1)
2019oveq1d 7165 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = (1 · 𝐵))
21 flcidc.b . . . . . 6 ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
226, 21syldan 593 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → 𝐵 ∈ ℂ)
2322mulid2d 10653 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (1 · 𝐵) = 𝐵)
2420, 23eqtrd 2856 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = 𝐵)
2524sumeq2dv 15054 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖 ∈ {𝐾}𝐵)
26 ax-1cn 10589 . . . . . 6 1 ∈ ℂ
27 0cn 10627 . . . . . 6 0 ∈ ℂ
2826, 27ifcli 4513 . . . . 5 if(𝑖 = 𝐾, 1, 0) ∈ ℂ
2915, 28eqeltrdi 2921 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) ∈ ℂ)
3029, 22mulcld 10655 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) ∈ ℂ)
312adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32 eldifi 4103 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → 𝑖𝑆)
3332adantl 484 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝑖𝑆)
3433, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
3531, 34eqtrd 2856 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
36 eldifn 4104 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 ∈ {𝐾})
37 velsn 4577 . . . . . . . . 9 (𝑖 ∈ {𝐾} ↔ 𝑖 = 𝐾)
3836, 37sylnib 330 . . . . . . . 8 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 = 𝐾)
3938iffalsed 4478 . . . . . . 7 (𝑖 ∈ (𝑆 ∖ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 0)
4039adantl 484 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → if(𝑖 = 𝐾, 1, 0) = 0)
4135, 40eqtrd 2856 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = 0)
4241oveq1d 7165 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = (0 · 𝐵))
4333, 21syldan 593 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝐵 ∈ ℂ)
4443mul02d 10832 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (0 · 𝐵) = 0)
4542, 44eqtrd 2856 . . 3 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = 0)
46 flcidc.s . . 3 (𝜑𝑆 ∈ Fin)
475, 30, 45, 46fsumss 15076 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖𝑆 ((𝐹𝑖) · 𝐵))
48 eleq1 2900 . . . . . . . 8 (𝑗 = 𝐾 → (𝑗𝑆𝐾𝑆))
4948anbi2d 630 . . . . . . 7 (𝑗 = 𝐾 → ((𝜑𝑗𝑆) ↔ (𝜑𝐾𝑆)))
50 csbeq1 3886 . . . . . . . 8 (𝑗 = 𝐾𝑗 / 𝑖𝐵 = 𝐾 / 𝑖𝐵)
5150eleq1d 2897 . . . . . . 7 (𝑗 = 𝐾 → (𝑗 / 𝑖𝐵 ∈ ℂ ↔ 𝐾 / 𝑖𝐵 ∈ ℂ))
5249, 51imbi12d 347 . . . . . 6 (𝑗 = 𝐾 → (((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ) ↔ ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)))
53 nfv 1911 . . . . . . . 8 𝑖(𝜑𝑗𝑆)
54 nfcsb1v 3907 . . . . . . . . 9 𝑖𝑗 / 𝑖𝐵
5554nfel1 2994 . . . . . . . 8 𝑖𝑗 / 𝑖𝐵 ∈ ℂ
5653, 55nfim 1893 . . . . . . 7 𝑖((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
57 eleq1 2900 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑖𝑆𝑗𝑆))
5857anbi2d 630 . . . . . . . 8 (𝑖 = 𝑗 → ((𝜑𝑖𝑆) ↔ (𝜑𝑗𝑆)))
59 csbeq1a 3897 . . . . . . . . 9 (𝑖 = 𝑗𝐵 = 𝑗 / 𝑖𝐵)
6059eleq1d 2897 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑖𝐵 ∈ ℂ))
6158, 60imbi12d 347 . . . . . . 7 (𝑖 = 𝑗 → (((𝜑𝑖𝑆) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)))
6256, 61, 21chvarfv 2237 . . . . . 6 ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
6352, 62vtoclg 3568 . . . . 5 (𝐾𝑆 → ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ))
6463anabsi7 669 . . . 4 ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)
654, 64mpdan 685 . . 3 (𝜑𝐾 / 𝑖𝐵 ∈ ℂ)
66 sumsns 15099 . . 3 ((𝐾𝑆𝐾 / 𝑖𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
674, 65, 66syl2anc 586 . 2 (𝜑 → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
6825, 47, 673eqtr3d 2864 1 (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  csb 3883  cdif 3933  ifcif 4467  {csn 4561  cmpt 5139  cfv 6350  (class class class)co 7150  Fincfn 8503  cc 10529  0cc0 10531  1c1 10532   · cmul 10536  Σcsu 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator