Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flcidc Structured version   Visualization version   GIF version

Theorem flcidc 43161
Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Hypotheses
Ref Expression
flcidc.f (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
flcidc.s (𝜑𝑆 ∈ Fin)
flcidc.k (𝜑𝐾𝑆)
flcidc.b ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
flcidc (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐹   𝑆,𝑖,𝑗   𝑖,𝐾,𝑗   𝐵,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝐹(𝑗)

Proof of Theorem flcidc
StepHypRef Expression
1 flcidc.f . . . . . . . . 9 (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
21fveq1d 6883 . . . . . . . 8 (𝜑 → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
4 flcidc.k . . . . . . . . . 10 (𝜑𝐾𝑆)
54snssd 4790 . . . . . . . . 9 (𝜑 → {𝐾} ⊆ 𝑆)
65sselda 3963 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐾}) → 𝑖𝑆)
7 eqeq1 2740 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝐾𝑖 = 𝐾))
87ifbid 4529 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = 𝐾, 1, 0) = if(𝑖 = 𝐾, 1, 0))
9 eqid 2736 . . . . . . . . 9 (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)) = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))
10 1ex 11236 . . . . . . . . . 10 1 ∈ V
11 c0ex 11234 . . . . . . . . . 10 0 ∈ V
1210, 11ifex 4556 . . . . . . . . 9 if(𝑖 = 𝐾, 1, 0) ∈ V
138, 9, 12fvmpt 6991 . . . . . . . 8 (𝑖𝑆 → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
146, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
153, 14eqtrd 2771 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
16 elsni 4623 . . . . . . . 8 (𝑖 ∈ {𝐾} → 𝑖 = 𝐾)
1716iftrued 4513 . . . . . . 7 (𝑖 ∈ {𝐾} → if(𝑖 = 𝐾, 1, 0) = 1)
1817adantl 481 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 1)
1915, 18eqtrd 2771 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = 1)
2019oveq1d 7425 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = (1 · 𝐵))
21 flcidc.b . . . . . 6 ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
226, 21syldan 591 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → 𝐵 ∈ ℂ)
2322mullidd 11258 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (1 · 𝐵) = 𝐵)
2420, 23eqtrd 2771 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = 𝐵)
2524sumeq2dv 15723 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖 ∈ {𝐾}𝐵)
26 ax-1cn 11192 . . . . . 6 1 ∈ ℂ
27 0cn 11232 . . . . . 6 0 ∈ ℂ
2826, 27ifcli 4553 . . . . 5 if(𝑖 = 𝐾, 1, 0) ∈ ℂ
2915, 28eqeltrdi 2843 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) ∈ ℂ)
3029, 22mulcld 11260 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) ∈ ℂ)
312adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32 eldifi 4111 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → 𝑖𝑆)
3332adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝑖𝑆)
3433, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
3531, 34eqtrd 2771 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
36 eldifn 4112 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 ∈ {𝐾})
37 velsn 4622 . . . . . . . . 9 (𝑖 ∈ {𝐾} ↔ 𝑖 = 𝐾)
3836, 37sylnib 328 . . . . . . . 8 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 = 𝐾)
3938iffalsed 4516 . . . . . . 7 (𝑖 ∈ (𝑆 ∖ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 0)
4039adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → if(𝑖 = 𝐾, 1, 0) = 0)
4135, 40eqtrd 2771 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = 0)
4241oveq1d 7425 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = (0 · 𝐵))
4333, 21syldan 591 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝐵 ∈ ℂ)
4443mul02d 11438 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (0 · 𝐵) = 0)
4542, 44eqtrd 2771 . . 3 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = 0)
46 flcidc.s . . 3 (𝜑𝑆 ∈ Fin)
475, 30, 45, 46fsumss 15746 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖𝑆 ((𝐹𝑖) · 𝐵))
48 eleq1 2823 . . . . . . . 8 (𝑗 = 𝐾 → (𝑗𝑆𝐾𝑆))
4948anbi2d 630 . . . . . . 7 (𝑗 = 𝐾 → ((𝜑𝑗𝑆) ↔ (𝜑𝐾𝑆)))
50 csbeq1 3882 . . . . . . . 8 (𝑗 = 𝐾𝑗 / 𝑖𝐵 = 𝐾 / 𝑖𝐵)
5150eleq1d 2820 . . . . . . 7 (𝑗 = 𝐾 → (𝑗 / 𝑖𝐵 ∈ ℂ ↔ 𝐾 / 𝑖𝐵 ∈ ℂ))
5249, 51imbi12d 344 . . . . . 6 (𝑗 = 𝐾 → (((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ) ↔ ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)))
53 nfv 1914 . . . . . . . 8 𝑖(𝜑𝑗𝑆)
54 nfcsb1v 3903 . . . . . . . . 9 𝑖𝑗 / 𝑖𝐵
5554nfel1 2916 . . . . . . . 8 𝑖𝑗 / 𝑖𝐵 ∈ ℂ
5653, 55nfim 1896 . . . . . . 7 𝑖((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
57 eleq1 2823 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑖𝑆𝑗𝑆))
5857anbi2d 630 . . . . . . . 8 (𝑖 = 𝑗 → ((𝜑𝑖𝑆) ↔ (𝜑𝑗𝑆)))
59 csbeq1a 3893 . . . . . . . . 9 (𝑖 = 𝑗𝐵 = 𝑗 / 𝑖𝐵)
6059eleq1d 2820 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑖𝐵 ∈ ℂ))
6158, 60imbi12d 344 . . . . . . 7 (𝑖 = 𝑗 → (((𝜑𝑖𝑆) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)))
6256, 61, 21chvarfv 2241 . . . . . 6 ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
6352, 62vtoclg 3538 . . . . 5 (𝐾𝑆 → ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ))
6463anabsi7 671 . . . 4 ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)
654, 64mpdan 687 . . 3 (𝜑𝐾 / 𝑖𝐵 ∈ ℂ)
66 sumsns 15771 . . 3 ((𝐾𝑆𝐾 / 𝑖𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
674, 65, 66syl2anc 584 . 2 (𝜑 → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
6825, 47, 673eqtr3d 2779 1 (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3879  cdif 3928  ifcif 4505  {csn 4606  cmpt 5206  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  0cc0 11134  1c1 11135   · cmul 11139  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator