MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni2 Structured version   Visualization version   GIF version

Theorem onsucuni2 7722
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2825 . . . . . 6 (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On))
21biimpac 479 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On)
3 eloni 6296 . . . . 5 (suc 𝐵 ∈ On → Ord suc 𝐵)
4 ordsuc 7701 . . . . . . . 8 (Ord 𝐵 ↔ Ord suc 𝐵)
5 ordunisuc 7720 . . . . . . . 8 (Ord 𝐵 suc 𝐵 = 𝐵)
64, 5sylbir 234 . . . . . . 7 (Ord suc 𝐵 suc 𝐵 = 𝐵)
7 suceq 6351 . . . . . . 7 ( suc 𝐵 = 𝐵 → suc suc 𝐵 = suc 𝐵)
86, 7syl 17 . . . . . 6 (Ord suc 𝐵 → suc suc 𝐵 = suc 𝐵)
9 ordunisuc 7720 . . . . . 6 (Ord suc 𝐵 suc suc 𝐵 = suc 𝐵)
108, 9eqtr4d 2780 . . . . 5 (Ord suc 𝐵 → suc suc 𝐵 = suc suc 𝐵)
112, 3, 103syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc suc 𝐵 = suc suc 𝐵)
12 unieq 4859 . . . . . 6 (𝐴 = suc 𝐵 𝐴 = suc 𝐵)
13 suceq 6351 . . . . . 6 ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
1412, 13syl 17 . . . . 5 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
15 suceq 6351 . . . . . 6 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
1615unieqd 4862 . . . . 5 (𝐴 = suc 𝐵 suc 𝐴 = suc suc 𝐵)
1714, 16eqeq12d 2753 . . . 4 (𝐴 = suc 𝐵 → (suc 𝐴 = suc 𝐴 ↔ suc suc 𝐵 = suc suc 𝐵))
1811, 17syl5ibr 245 . . 3 (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴))
1918anabsi7 668 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴)
20 eloni 6296 . . . 4 (𝐴 ∈ On → Ord 𝐴)
21 ordunisuc 7720 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
2220, 21syl 17 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
2322adantr 481 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
2419, 23eqtrd 2777 1 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105   cuni 4848  Ord word 6285  Oncon0 6286  suc csuc 6288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-tr 5203  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-ord 6289  df-on 6290  df-suc 6292
This theorem is referenced by:  rankxplim3  9707  rankxpsuc  9708
  Copyright terms: Public domain W3C validator