MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni2 Structured version   Visualization version   GIF version

Theorem onsucuni2 7774
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2826 . . . . . 6 (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On))
21biimpac 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On)
3 eloni 6332 . . . . 5 (suc 𝐵 ∈ On → Ord suc 𝐵)
4 ordsuc 7753 . . . . . . . 8 (Ord 𝐵 ↔ Ord suc 𝐵)
5 ordunisuc 7772 . . . . . . . 8 (Ord 𝐵 suc 𝐵 = 𝐵)
64, 5sylbir 234 . . . . . . 7 (Ord suc 𝐵 suc 𝐵 = 𝐵)
7 suceq 6388 . . . . . . 7 ( suc 𝐵 = 𝐵 → suc suc 𝐵 = suc 𝐵)
86, 7syl 17 . . . . . 6 (Ord suc 𝐵 → suc suc 𝐵 = suc 𝐵)
9 ordunisuc 7772 . . . . . 6 (Ord suc 𝐵 suc suc 𝐵 = suc 𝐵)
108, 9eqtr4d 2780 . . . . 5 (Ord suc 𝐵 → suc suc 𝐵 = suc suc 𝐵)
112, 3, 103syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc suc 𝐵 = suc suc 𝐵)
12 unieq 4881 . . . . . 6 (𝐴 = suc 𝐵 𝐴 = suc 𝐵)
13 suceq 6388 . . . . . 6 ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
1412, 13syl 17 . . . . 5 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
15 suceq 6388 . . . . . 6 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
1615unieqd 4884 . . . . 5 (𝐴 = suc 𝐵 suc 𝐴 = suc suc 𝐵)
1714, 16eqeq12d 2753 . . . 4 (𝐴 = suc 𝐵 → (suc 𝐴 = suc 𝐴 ↔ suc suc 𝐵 = suc suc 𝐵))
1811, 17syl5ibr 246 . . 3 (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴))
1918anabsi7 670 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴)
20 eloni 6332 . . . 4 (𝐴 ∈ On → Ord 𝐴)
21 ordunisuc 7772 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
2220, 21syl 17 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
2322adantr 482 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
2419, 23eqtrd 2777 1 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   cuni 4870  Ord word 6321  Oncon0 6322  suc csuc 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-ord 6325  df-on 6326  df-suc 6328
This theorem is referenced by:  rankxplim3  9824  rankxpsuc  9825  onsucf1lem  41633
  Copyright terms: Public domain W3C validator