Proof of Theorem onsucuni2
| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2823 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On)) |
| 2 | 1 | biimpac 478 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On) |
| 3 | | eloni 6367 |
. . . . 5
⊢ (suc
𝐵 ∈ On → Ord suc
𝐵) |
| 4 | | ordsuc 7812 |
. . . . . . . 8
⊢ (Ord
𝐵 ↔ Ord suc 𝐵) |
| 5 | | ordunisuc 7831 |
. . . . . . . 8
⊢ (Ord
𝐵 → ∪ suc 𝐵 = 𝐵) |
| 6 | 4, 5 | sylbir 235 |
. . . . . . 7
⊢ (Ord suc
𝐵 → ∪ suc 𝐵 = 𝐵) |
| 7 | | suceq 6424 |
. . . . . . 7
⊢ (∪ suc 𝐵 = 𝐵 → suc ∪ suc
𝐵 = suc 𝐵) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (Ord suc
𝐵 → suc ∪ suc 𝐵 = suc 𝐵) |
| 9 | | ordunisuc 7831 |
. . . . . 6
⊢ (Ord suc
𝐵 → ∪ suc suc 𝐵 = suc 𝐵) |
| 10 | 8, 9 | eqtr4d 2774 |
. . . . 5
⊢ (Ord suc
𝐵 → suc ∪ suc 𝐵 = ∪ suc suc
𝐵) |
| 11 | 2, 3, 10 | 3syl 18 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
suc 𝐵 = ∪ suc suc 𝐵) |
| 12 | | unieq 4899 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → ∪ 𝐴 = ∪
suc 𝐵) |
| 13 | | suceq 6424 |
. . . . . 6
⊢ (∪ 𝐴 =
∪ suc 𝐵 → suc ∪
𝐴 = suc ∪ suc 𝐵) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝐴 = suc 𝐵 → suc ∪
𝐴 = suc ∪ suc 𝐵) |
| 15 | | suceq 6424 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵) |
| 16 | 15 | unieqd 4901 |
. . . . 5
⊢ (𝐴 = suc 𝐵 → ∪ suc
𝐴 = ∪ suc suc 𝐵) |
| 17 | 14, 16 | eqeq12d 2752 |
. . . 4
⊢ (𝐴 = suc 𝐵 → (suc ∪
𝐴 = ∪ suc 𝐴 ↔ suc ∪ suc
𝐵 = ∪ suc suc 𝐵)) |
| 18 | 11, 17 | imbitrrid 246 |
. . 3
⊢ (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = ∪ suc 𝐴)) |
| 19 | 18 | anabsi7 671 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = ∪ suc 𝐴) |
| 20 | | eloni 6367 |
. . . 4
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 21 | | ordunisuc 7831 |
. . . 4
⊢ (Ord
𝐴 → ∪ suc 𝐴 = 𝐴) |
| 22 | 20, 21 | syl 17 |
. . 3
⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| 23 | 22 | adantr 480 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → ∪ suc
𝐴 = 𝐴) |
| 24 | 19, 23 | eqtrd 2771 |
1
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = 𝐴) |