Proof of Theorem onsucuni2
Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On)) |
2 | 1 | biimpac 478 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On) |
3 | | eloni 6261 |
. . . . 5
⊢ (suc
𝐵 ∈ On → Ord suc
𝐵) |
4 | | ordsuc 7636 |
. . . . . . . 8
⊢ (Ord
𝐵 ↔ Ord suc 𝐵) |
5 | | ordunisuc 7654 |
. . . . . . . 8
⊢ (Ord
𝐵 → ∪ suc 𝐵 = 𝐵) |
6 | 4, 5 | sylbir 234 |
. . . . . . 7
⊢ (Ord suc
𝐵 → ∪ suc 𝐵 = 𝐵) |
7 | | suceq 6316 |
. . . . . . 7
⊢ (∪ suc 𝐵 = 𝐵 → suc ∪ suc
𝐵 = suc 𝐵) |
8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (Ord suc
𝐵 → suc ∪ suc 𝐵 = suc 𝐵) |
9 | | ordunisuc 7654 |
. . . . . 6
⊢ (Ord suc
𝐵 → ∪ suc suc 𝐵 = suc 𝐵) |
10 | 8, 9 | eqtr4d 2781 |
. . . . 5
⊢ (Ord suc
𝐵 → suc ∪ suc 𝐵 = ∪ suc suc
𝐵) |
11 | 2, 3, 10 | 3syl 18 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
suc 𝐵 = ∪ suc suc 𝐵) |
12 | | unieq 4847 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → ∪ 𝐴 = ∪
suc 𝐵) |
13 | | suceq 6316 |
. . . . . 6
⊢ (∪ 𝐴 =
∪ suc 𝐵 → suc ∪
𝐴 = suc ∪ suc 𝐵) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝐴 = suc 𝐵 → suc ∪
𝐴 = suc ∪ suc 𝐵) |
15 | | suceq 6316 |
. . . . . 6
⊢ (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵) |
16 | 15 | unieqd 4850 |
. . . . 5
⊢ (𝐴 = suc 𝐵 → ∪ suc
𝐴 = ∪ suc suc 𝐵) |
17 | 14, 16 | eqeq12d 2754 |
. . . 4
⊢ (𝐴 = suc 𝐵 → (suc ∪
𝐴 = ∪ suc 𝐴 ↔ suc ∪ suc
𝐵 = ∪ suc suc 𝐵)) |
18 | 11, 17 | syl5ibr 245 |
. . 3
⊢ (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = ∪ suc 𝐴)) |
19 | 18 | anabsi7 667 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = ∪ suc 𝐴) |
20 | | eloni 6261 |
. . . 4
⊢ (𝐴 ∈ On → Ord 𝐴) |
21 | | ordunisuc 7654 |
. . . 4
⊢ (Ord
𝐴 → ∪ suc 𝐴 = 𝐴) |
22 | 20, 21 | syl 17 |
. . 3
⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
23 | 22 | adantr 480 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → ∪ suc
𝐴 = 𝐴) |
24 | 19, 23 | eqtrd 2778 |
1
⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪
𝐴 = 𝐴) |