Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem30 Structured version   Visualization version   GIF version

Theorem stoweidlem30 42192
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem30.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem30.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem30.3 (𝜑𝑀 ∈ ℕ)
stoweidlem30.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem30.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem30 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem30
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2897 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
21anbi2d 628 . . . 4 (𝑠 = 𝑆 → ((𝜑𝑠𝑇) ↔ (𝜑𝑆𝑇)))
3 fveq2 6663 . . . . 5 (𝑠 = 𝑆 → (𝑃𝑠) = (𝑃𝑆))
4 fveq2 6663 . . . . . . 7 (𝑠 = 𝑆 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑆))
54sumeq2sdv 15049 . . . . . 6 (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
65oveq2d 7161 . . . . 5 (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
73, 6eqeq12d 2834 . . . 4 (𝑠 = 𝑆 → ((𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ↔ (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
82, 7imbi12d 346 . . 3 (𝑠 = 𝑆 → (((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))) ↔ ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))))
9 stoweidlem30.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
10 fveq2 6663 . . . . . 6 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
1110sumeq2sdv 15049 . . . . 5 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
1211oveq2d 7161 . . . 4 (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
13 simpr 485 . . . 4 ((𝜑𝑠𝑇) → 𝑠𝑇)
14 stoweidlem30.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1514nnrecred 11676 . . . . . 6 (𝜑 → (1 / 𝑀) ∈ ℝ)
1615adantr 481 . . . . 5 ((𝜑𝑠𝑇) → (1 / 𝑀) ∈ ℝ)
17 fzfid 13329 . . . . . 6 ((𝜑𝑠𝑇) → (1...𝑀) ∈ Fin)
18 stoweidlem30.1 . . . . . . . . 9 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
19 stoweidlem30.4 . . . . . . . . 9 (𝜑𝐺:(1...𝑀)⟶𝑄)
20 stoweidlem30.5 . . . . . . . . 9 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2118, 19, 20stoweidlem15 42177 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → (((𝐺𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑠) ∧ ((𝐺𝑖)‘𝑠) ≤ 1))
2221simp1d 1134 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2322an32s 648 . . . . . 6 (((𝜑𝑠𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2417, 23fsumrecl 15079 . . . . 5 ((𝜑𝑠𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) ∈ ℝ)
2516, 24remulcld 10659 . . . 4 ((𝜑𝑠𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ∈ ℝ)
269, 12, 13, 25fvmptd3 6783 . . 3 ((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
278, 26vtoclg 3565 . 2 (𝑆𝑇 → ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
2827anabsi7 667 1 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  {crab 3139   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   · cmul 10530  cle 10664   / cdiv 11285  cn 11626  ...cfz 12880  Σcsu 15030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031
This theorem is referenced by:  stoweidlem37  42199  stoweidlem38  42200  stoweidlem44  42206
  Copyright terms: Public domain W3C validator