![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem30 | Structured version Visualization version GIF version |
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem30.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
stoweidlem30.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
stoweidlem30.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
stoweidlem30.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
stoweidlem30.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
Ref | Expression |
---|---|
stoweidlem30 | ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝑇 ↔ 𝑆 ∈ 𝑇)) | |
2 | 1 | anbi2d 629 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝜑 ∧ 𝑠 ∈ 𝑇) ↔ (𝜑 ∧ 𝑆 ∈ 𝑇))) |
3 | fveq2 6920 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑃‘𝑠) = (𝑃‘𝑆)) | |
4 | fveq2 6920 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝐺‘𝑖)‘𝑠) = ((𝐺‘𝑖)‘𝑆)) | |
5 | 4 | sumeq2sdv 15751 | . . . . . 6 ⊢ (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)) |
6 | 5 | oveq2d 7464 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
7 | 3, 6 | eqeq12d 2756 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ↔ (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
8 | 2, 7 | imbi12d 344 | . . 3 ⊢ (𝑠 = 𝑆 → (((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) ↔ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))))) |
9 | stoweidlem30.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
10 | fveq2 6920 | . . . . . 6 ⊢ (𝑡 = 𝑠 → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘𝑖)‘𝑠)) | |
11 | 10 | sumeq2sdv 15751 | . . . . 5 ⊢ (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) |
12 | 11 | oveq2d 7464 | . . . 4 ⊢ (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → 𝑠 ∈ 𝑇) | |
14 | stoweidlem30.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
15 | 14 | nnrecred 12344 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1 / 𝑀) ∈ ℝ) |
17 | fzfid 14024 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1...𝑀) ∈ Fin) | |
18 | stoweidlem30.1 | . . . . . . . . 9 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
19 | stoweidlem30.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
20 | stoweidlem30.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
21 | 18, 19, 20 | stoweidlem15 45936 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → (((𝐺‘𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝑖)‘𝑠) ∧ ((𝐺‘𝑖)‘𝑠) ≤ 1)) |
22 | 21 | simp1d 1142 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
23 | 22 | an32s 651 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
24 | 17, 23 | fsumrecl 15782 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
25 | 16, 24 | remulcld 11320 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ∈ ℝ) |
26 | 9, 12, 13, 25 | fvmptd3 7052 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
27 | 8, 26 | vtoclg 3566 | . 2 ⊢ (𝑆 ∈ 𝑇 → ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
28 | 27 | anabsi7 670 | 1 ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 class class class wbr 5166 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 ≤ cle 11325 / cdiv 11947 ℕcn 12293 ...cfz 13567 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 |
This theorem is referenced by: stoweidlem37 45958 stoweidlem38 45959 stoweidlem44 45965 |
Copyright terms: Public domain | W3C validator |