Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem30 | Structured version Visualization version GIF version |
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem30.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
stoweidlem30.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
stoweidlem30.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
stoweidlem30.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
stoweidlem30.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
Ref | Expression |
---|---|
stoweidlem30 | ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝑇 ↔ 𝑆 ∈ 𝑇)) | |
2 | 1 | anbi2d 632 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝜑 ∧ 𝑠 ∈ 𝑇) ↔ (𝜑 ∧ 𝑆 ∈ 𝑇))) |
3 | fveq2 6717 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑃‘𝑠) = (𝑃‘𝑆)) | |
4 | fveq2 6717 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝐺‘𝑖)‘𝑠) = ((𝐺‘𝑖)‘𝑆)) | |
5 | 4 | sumeq2sdv 15268 | . . . . . 6 ⊢ (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)) |
6 | 5 | oveq2d 7229 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
7 | 3, 6 | eqeq12d 2753 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ↔ (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
8 | 2, 7 | imbi12d 348 | . . 3 ⊢ (𝑠 = 𝑆 → (((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) ↔ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))))) |
9 | stoweidlem30.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
10 | fveq2 6717 | . . . . . 6 ⊢ (𝑡 = 𝑠 → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘𝑖)‘𝑠)) | |
11 | 10 | sumeq2sdv 15268 | . . . . 5 ⊢ (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) |
12 | 11 | oveq2d 7229 | . . . 4 ⊢ (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
13 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → 𝑠 ∈ 𝑇) | |
14 | stoweidlem30.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
15 | 14 | nnrecred 11881 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) |
16 | 15 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1 / 𝑀) ∈ ℝ) |
17 | fzfid 13546 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1...𝑀) ∈ Fin) | |
18 | stoweidlem30.1 | . . . . . . . . 9 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
19 | stoweidlem30.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
20 | stoweidlem30.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
21 | 18, 19, 20 | stoweidlem15 43231 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → (((𝐺‘𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝑖)‘𝑠) ∧ ((𝐺‘𝑖)‘𝑠) ≤ 1)) |
22 | 21 | simp1d 1144 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
23 | 22 | an32s 652 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
24 | 17, 23 | fsumrecl 15298 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
25 | 16, 24 | remulcld 10863 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ∈ ℝ) |
26 | 9, 12, 13, 25 | fvmptd3 6841 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
27 | 8, 26 | vtoclg 3481 | . 2 ⊢ (𝑆 ∈ 𝑇 → ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
28 | 27 | anabsi7 671 | 1 ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 class class class wbr 5053 ↦ cmpt 5135 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 · cmul 10734 ≤ cle 10868 / cdiv 11489 ℕcn 11830 ...cfz 13095 Σcsu 15249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 |
This theorem is referenced by: stoweidlem37 43253 stoweidlem38 43254 stoweidlem44 43260 |
Copyright terms: Public domain | W3C validator |