Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem30 Structured version   Visualization version   GIF version

Theorem stoweidlem30 42840
 Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem30.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem30.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem30.3 (𝜑𝑀 ∈ ℕ)
stoweidlem30.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem30.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem30 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem30
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2877 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
21anbi2d 631 . . . 4 (𝑠 = 𝑆 → ((𝜑𝑠𝑇) ↔ (𝜑𝑆𝑇)))
3 fveq2 6655 . . . . 5 (𝑠 = 𝑆 → (𝑃𝑠) = (𝑃𝑆))
4 fveq2 6655 . . . . . . 7 (𝑠 = 𝑆 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑆))
54sumeq2sdv 15073 . . . . . 6 (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
65oveq2d 7161 . . . . 5 (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
73, 6eqeq12d 2814 . . . 4 (𝑠 = 𝑆 → ((𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ↔ (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
82, 7imbi12d 348 . . 3 (𝑠 = 𝑆 → (((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))) ↔ ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))))
9 stoweidlem30.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
10 fveq2 6655 . . . . . 6 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
1110sumeq2sdv 15073 . . . . 5 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
1211oveq2d 7161 . . . 4 (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
13 simpr 488 . . . 4 ((𝜑𝑠𝑇) → 𝑠𝑇)
14 stoweidlem30.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1514nnrecred 11694 . . . . . 6 (𝜑 → (1 / 𝑀) ∈ ℝ)
1615adantr 484 . . . . 5 ((𝜑𝑠𝑇) → (1 / 𝑀) ∈ ℝ)
17 fzfid 13356 . . . . . 6 ((𝜑𝑠𝑇) → (1...𝑀) ∈ Fin)
18 stoweidlem30.1 . . . . . . . . 9 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
19 stoweidlem30.4 . . . . . . . . 9 (𝜑𝐺:(1...𝑀)⟶𝑄)
20 stoweidlem30.5 . . . . . . . . 9 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2118, 19, 20stoweidlem15 42825 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → (((𝐺𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑠) ∧ ((𝐺𝑖)‘𝑠) ≤ 1))
2221simp1d 1139 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2322an32s 651 . . . . . 6 (((𝜑𝑠𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2417, 23fsumrecl 15103 . . . . 5 ((𝜑𝑠𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) ∈ ℝ)
2516, 24remulcld 10678 . . . 4 ((𝜑𝑠𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ∈ ℝ)
269, 12, 13, 25fvmptd3 6778 . . 3 ((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
278, 26vtoclg 3516 . 2 (𝑆𝑇 → ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
2827anabsi7 670 1 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110   class class class wbr 5034   ↦ cmpt 5114  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  ℝcr 10543  0cc0 10544  1c1 10545   · cmul 10549   ≤ cle 10683   / cdiv 11304  ℕcn 11643  ...cfz 12905  Σcsu 15054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-seq 13385  df-exp 13446  df-hash 13707  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-clim 14857  df-sum 15055 This theorem is referenced by:  stoweidlem37  42847  stoweidlem38  42848  stoweidlem44  42854
 Copyright terms: Public domain W3C validator