| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem30 | Structured version Visualization version GIF version | ||
| Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem30.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
| stoweidlem30.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
| stoweidlem30.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| stoweidlem30.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
| stoweidlem30.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| Ref | Expression |
|---|---|
| stoweidlem30 | ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝑇 ↔ 𝑆 ∈ 𝑇)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝜑 ∧ 𝑠 ∈ 𝑇) ↔ (𝜑 ∧ 𝑆 ∈ 𝑇))) |
| 3 | fveq2 6822 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑃‘𝑠) = (𝑃‘𝑆)) | |
| 4 | fveq2 6822 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝐺‘𝑖)‘𝑠) = ((𝐺‘𝑖)‘𝑆)) | |
| 5 | 4 | sumeq2sdv 15610 | . . . . . 6 ⊢ (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)) |
| 6 | 5 | oveq2d 7362 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
| 7 | 3, 6 | eqeq12d 2747 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ↔ (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
| 8 | 2, 7 | imbi12d 344 | . . 3 ⊢ (𝑠 = 𝑆 → (((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) ↔ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))))) |
| 9 | stoweidlem30.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
| 10 | fveq2 6822 | . . . . . 6 ⊢ (𝑡 = 𝑠 → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘𝑖)‘𝑠)) | |
| 11 | 10 | sumeq2sdv 15610 | . . . . 5 ⊢ (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) |
| 12 | 11 | oveq2d 7362 | . . . 4 ⊢ (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → 𝑠 ∈ 𝑇) | |
| 14 | stoweidlem30.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 15 | 14 | nnrecred 12176 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1 / 𝑀) ∈ ℝ) |
| 17 | fzfid 13880 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1...𝑀) ∈ Fin) | |
| 18 | stoweidlem30.1 | . . . . . . . . 9 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
| 19 | stoweidlem30.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
| 20 | stoweidlem30.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
| 21 | 18, 19, 20 | stoweidlem15 46123 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → (((𝐺‘𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝑖)‘𝑠) ∧ ((𝐺‘𝑖)‘𝑠) ≤ 1)) |
| 22 | 21 | simp1d 1142 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
| 23 | 22 | an32s 652 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
| 24 | 17, 23 | fsumrecl 15641 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
| 25 | 16, 24 | remulcld 11142 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ∈ ℝ) |
| 26 | 9, 12, 13, 25 | fvmptd3 6952 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
| 27 | 8, 26 | vtoclg 3507 | . 2 ⊢ (𝑆 ∈ 𝑇 → ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
| 28 | 27 | anabsi7 671 | 1 ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 · cmul 11011 ≤ cle 11147 / cdiv 11774 ℕcn 12125 ...cfz 13407 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: stoweidlem37 46145 stoweidlem38 46146 stoweidlem44 46152 |
| Copyright terms: Public domain | W3C validator |