| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem30 | Structured version Visualization version GIF version | ||
| Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem30.1 | ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
| stoweidlem30.2 | ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
| stoweidlem30.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| stoweidlem30.4 | ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) |
| stoweidlem30.5 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| Ref | Expression |
|---|---|
| stoweidlem30 | ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝑇 ↔ 𝑆 ∈ 𝑇)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝜑 ∧ 𝑠 ∈ 𝑇) ↔ (𝜑 ∧ 𝑆 ∈ 𝑇))) |
| 3 | fveq2 6858 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑃‘𝑠) = (𝑃‘𝑆)) | |
| 4 | fveq2 6858 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝐺‘𝑖)‘𝑠) = ((𝐺‘𝑖)‘𝑆)) | |
| 5 | 4 | sumeq2sdv 15669 | . . . . . 6 ⊢ (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)) |
| 6 | 5 | oveq2d 7403 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
| 7 | 3, 6 | eqeq12d 2745 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ↔ (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
| 8 | 2, 7 | imbi12d 344 | . . 3 ⊢ (𝑠 = 𝑆 → (((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) ↔ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))))) |
| 9 | stoweidlem30.2 | . . . 4 ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) | |
| 10 | fveq2 6858 | . . . . . 6 ⊢ (𝑡 = 𝑠 → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘𝑖)‘𝑠)) | |
| 11 | 10 | sumeq2sdv 15669 | . . . . 5 ⊢ (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) |
| 12 | 11 | oveq2d 7403 | . . . 4 ⊢ (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → 𝑠 ∈ 𝑇) | |
| 14 | stoweidlem30.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 15 | 14 | nnrecred 12237 | . . . . . 6 ⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1 / 𝑀) ∈ ℝ) |
| 17 | fzfid 13938 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (1...𝑀) ∈ Fin) | |
| 18 | stoweidlem30.1 | . . . . . . . . 9 ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} | |
| 19 | stoweidlem30.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) | |
| 20 | stoweidlem30.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) | |
| 21 | 18, 19, 20 | stoweidlem15 46013 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → (((𝐺‘𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝑖)‘𝑠) ∧ ((𝐺‘𝑖)‘𝑠) ≤ 1)) |
| 22 | 21 | simp1d 1142 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑀)) ∧ 𝑠 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
| 23 | 22 | an32s 652 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑠 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
| 24 | 17, 23 | fsumrecl 15700 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠) ∈ ℝ) |
| 25 | 16, 24 | remulcld 11204 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠)) ∈ ℝ) |
| 26 | 9, 12, 13, 25 | fvmptd3 6991 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝑃‘𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑠))) |
| 27 | 8, 26 | vtoclg 3520 | . 2 ⊢ (𝑆 ∈ 𝑇 → ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆)))) |
| 28 | 27 | anabsi7 671 | 1 ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 ≤ cle 11209 / cdiv 11835 ℕcn 12186 ...cfz 13468 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: stoweidlem37 46035 stoweidlem38 46036 stoweidlem44 46042 |
| Copyright terms: Public domain | W3C validator |