Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem30 Structured version   Visualization version   GIF version

Theorem stoweidlem30 43246
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem30.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem30.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem30.3 (𝜑𝑀 ∈ ℕ)
stoweidlem30.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem30.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem30 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem30
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2825 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
21anbi2d 632 . . . 4 (𝑠 = 𝑆 → ((𝜑𝑠𝑇) ↔ (𝜑𝑆𝑇)))
3 fveq2 6717 . . . . 5 (𝑠 = 𝑆 → (𝑃𝑠) = (𝑃𝑆))
4 fveq2 6717 . . . . . . 7 (𝑠 = 𝑆 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑆))
54sumeq2sdv 15268 . . . . . 6 (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
65oveq2d 7229 . . . . 5 (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
73, 6eqeq12d 2753 . . . 4 (𝑠 = 𝑆 → ((𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ↔ (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
82, 7imbi12d 348 . . 3 (𝑠 = 𝑆 → (((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))) ↔ ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))))
9 stoweidlem30.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
10 fveq2 6717 . . . . . 6 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
1110sumeq2sdv 15268 . . . . 5 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
1211oveq2d 7229 . . . 4 (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
13 simpr 488 . . . 4 ((𝜑𝑠𝑇) → 𝑠𝑇)
14 stoweidlem30.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1514nnrecred 11881 . . . . . 6 (𝜑 → (1 / 𝑀) ∈ ℝ)
1615adantr 484 . . . . 5 ((𝜑𝑠𝑇) → (1 / 𝑀) ∈ ℝ)
17 fzfid 13546 . . . . . 6 ((𝜑𝑠𝑇) → (1...𝑀) ∈ Fin)
18 stoweidlem30.1 . . . . . . . . 9 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
19 stoweidlem30.4 . . . . . . . . 9 (𝜑𝐺:(1...𝑀)⟶𝑄)
20 stoweidlem30.5 . . . . . . . . 9 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2118, 19, 20stoweidlem15 43231 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → (((𝐺𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑠) ∧ ((𝐺𝑖)‘𝑠) ≤ 1))
2221simp1d 1144 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2322an32s 652 . . . . . 6 (((𝜑𝑠𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2417, 23fsumrecl 15298 . . . . 5 ((𝜑𝑠𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) ∈ ℝ)
2516, 24remulcld 10863 . . . 4 ((𝜑𝑠𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ∈ ℝ)
269, 12, 13, 25fvmptd3 6841 . . 3 ((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
278, 26vtoclg 3481 . 2 (𝑆𝑇 → ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
2827anabsi7 671 1 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  {crab 3065   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   · cmul 10734  cle 10868   / cdiv 11489  cn 11830  ...cfz 13095  Σcsu 15249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250
This theorem is referenced by:  stoweidlem37  43253  stoweidlem38  43254  stoweidlem44  43260
  Copyright terms: Public domain W3C validator