Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem30 Structured version   Visualization version   GIF version

Theorem stoweidlem30 46026
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem30.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem30.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem30.3 (𝜑𝑀 ∈ ℕ)
stoweidlem30.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem30.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem30 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem30
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2823 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
21anbi2d 630 . . . 4 (𝑠 = 𝑆 → ((𝜑𝑠𝑇) ↔ (𝜑𝑆𝑇)))
3 fveq2 6881 . . . . 5 (𝑠 = 𝑆 → (𝑃𝑠) = (𝑃𝑆))
4 fveq2 6881 . . . . . . 7 (𝑠 = 𝑆 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑆))
54sumeq2sdv 15724 . . . . . 6 (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
65oveq2d 7426 . . . . 5 (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
73, 6eqeq12d 2752 . . . 4 (𝑠 = 𝑆 → ((𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ↔ (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
82, 7imbi12d 344 . . 3 (𝑠 = 𝑆 → (((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))) ↔ ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))))
9 stoweidlem30.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
10 fveq2 6881 . . . . . 6 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
1110sumeq2sdv 15724 . . . . 5 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
1211oveq2d 7426 . . . 4 (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
13 simpr 484 . . . 4 ((𝜑𝑠𝑇) → 𝑠𝑇)
14 stoweidlem30.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1514nnrecred 12296 . . . . . 6 (𝜑 → (1 / 𝑀) ∈ ℝ)
1615adantr 480 . . . . 5 ((𝜑𝑠𝑇) → (1 / 𝑀) ∈ ℝ)
17 fzfid 13996 . . . . . 6 ((𝜑𝑠𝑇) → (1...𝑀) ∈ Fin)
18 stoweidlem30.1 . . . . . . . . 9 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
19 stoweidlem30.4 . . . . . . . . 9 (𝜑𝐺:(1...𝑀)⟶𝑄)
20 stoweidlem30.5 . . . . . . . . 9 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2118, 19, 20stoweidlem15 46011 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → (((𝐺𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑠) ∧ ((𝐺𝑖)‘𝑠) ≤ 1))
2221simp1d 1142 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2322an32s 652 . . . . . 6 (((𝜑𝑠𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2417, 23fsumrecl 15755 . . . . 5 ((𝜑𝑠𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) ∈ ℝ)
2516, 24remulcld 11270 . . . 4 ((𝜑𝑠𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ∈ ℝ)
269, 12, 13, 25fvmptd3 7014 . . 3 ((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
278, 26vtoclg 3538 . 2 (𝑆𝑇 → ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
2827anabsi7 671 1 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   · cmul 11139  cle 11275   / cdiv 11899  cn 12245  ...cfz 13529  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708
This theorem is referenced by:  stoweidlem37  46033  stoweidlem38  46034  stoweidlem44  46040
  Copyright terms: Public domain W3C validator