![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem30 | Structured version Visualization version GIF version |
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (πΊβπ) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem30.1 | β’ π = {β β π΄ β£ ((ββπ) = 0 β§ βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1))} |
stoweidlem30.2 | β’ π = (π‘ β π β¦ ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ‘))) |
stoweidlem30.3 | β’ (π β π β β) |
stoweidlem30.4 | β’ (π β πΊ:(1...π)βΆπ) |
stoweidlem30.5 | β’ ((π β§ π β π΄) β π:πβΆβ) |
Ref | Expression |
---|---|
stoweidlem30 | β’ ((π β§ π β π) β (πβπ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2822 | . . . . 5 β’ (π = π β (π β π β π β π)) | |
2 | 1 | anbi2d 630 | . . . 4 β’ (π = π β ((π β§ π β π) β (π β§ π β π))) |
3 | fveq2 6892 | . . . . 5 β’ (π = π β (πβπ ) = (πβπ)) | |
4 | fveq2 6892 | . . . . . . 7 β’ (π = π β ((πΊβπ)βπ ) = ((πΊβπ)βπ)) | |
5 | 4 | sumeq2sdv 15650 | . . . . . 6 β’ (π = π β Ξ£π β (1...π)((πΊβπ)βπ ) = Ξ£π β (1...π)((πΊβπ)βπ)) |
6 | 5 | oveq2d 7425 | . . . . 5 β’ (π = π β ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ )) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ))) |
7 | 3, 6 | eqeq12d 2749 | . . . 4 β’ (π = π β ((πβπ ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ )) β (πβπ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ)))) |
8 | 2, 7 | imbi12d 345 | . . 3 β’ (π = π β (((π β§ π β π) β (πβπ ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ ))) β ((π β§ π β π) β (πβπ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ))))) |
9 | stoweidlem30.2 | . . . 4 β’ π = (π‘ β π β¦ ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ‘))) | |
10 | fveq2 6892 | . . . . . 6 β’ (π‘ = π β ((πΊβπ)βπ‘) = ((πΊβπ)βπ )) | |
11 | 10 | sumeq2sdv 15650 | . . . . 5 β’ (π‘ = π β Ξ£π β (1...π)((πΊβπ)βπ‘) = Ξ£π β (1...π)((πΊβπ)βπ )) |
12 | 11 | oveq2d 7425 | . . . 4 β’ (π‘ = π β ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ‘)) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ ))) |
13 | simpr 486 | . . . 4 β’ ((π β§ π β π) β π β π) | |
14 | stoweidlem30.3 | . . . . . . 7 β’ (π β π β β) | |
15 | 14 | nnrecred 12263 | . . . . . 6 β’ (π β (1 / π) β β) |
16 | 15 | adantr 482 | . . . . 5 β’ ((π β§ π β π) β (1 / π) β β) |
17 | fzfid 13938 | . . . . . 6 β’ ((π β§ π β π) β (1...π) β Fin) | |
18 | stoweidlem30.1 | . . . . . . . . 9 β’ π = {β β π΄ β£ ((ββπ) = 0 β§ βπ‘ β π (0 β€ (ββπ‘) β§ (ββπ‘) β€ 1))} | |
19 | stoweidlem30.4 | . . . . . . . . 9 β’ (π β πΊ:(1...π)βΆπ) | |
20 | stoweidlem30.5 | . . . . . . . . 9 β’ ((π β§ π β π΄) β π:πβΆβ) | |
21 | 18, 19, 20 | stoweidlem15 44731 | . . . . . . . 8 β’ (((π β§ π β (1...π)) β§ π β π) β (((πΊβπ)βπ ) β β β§ 0 β€ ((πΊβπ)βπ ) β§ ((πΊβπ)βπ ) β€ 1)) |
22 | 21 | simp1d 1143 | . . . . . . 7 β’ (((π β§ π β (1...π)) β§ π β π) β ((πΊβπ)βπ ) β β) |
23 | 22 | an32s 651 | . . . . . 6 β’ (((π β§ π β π) β§ π β (1...π)) β ((πΊβπ)βπ ) β β) |
24 | 17, 23 | fsumrecl 15680 | . . . . 5 β’ ((π β§ π β π) β Ξ£π β (1...π)((πΊβπ)βπ ) β β) |
25 | 16, 24 | remulcld 11244 | . . . 4 β’ ((π β§ π β π) β ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ )) β β) |
26 | 9, 12, 13, 25 | fvmptd3 7022 | . . 3 β’ ((π β§ π β π) β (πβπ ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ ))) |
27 | 8, 26 | vtoclg 3557 | . 2 β’ (π β π β ((π β§ π β π) β (πβπ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ)))) |
28 | 27 | anabsi7 670 | 1 β’ ((π β§ π β π) β (πβπ) = ((1 / π) Β· Ξ£π β (1...π)((πΊβπ)βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 {crab 3433 class class class wbr 5149 β¦ cmpt 5232 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcr 11109 0cc0 11110 1c1 11111 Β· cmul 11115 β€ cle 11249 / cdiv 11871 βcn 12212 ...cfz 13484 Ξ£csu 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 |
This theorem is referenced by: stoweidlem37 44753 stoweidlem38 44754 stoweidlem44 44760 |
Copyright terms: Public domain | W3C validator |