| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodcnlem | Structured version Visualization version GIF version | ||
| Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) Avoid ax-mulf 11108. (Revised by GG, 19-Apr-2025.) |
| Ref | Expression |
|---|---|
| fprodcnlem.1 | ⊢ Ⅎ𝑘𝜑 |
| fprodcnlem.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| fprodcnlem.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| fprodcnlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodcnlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| fprodcnlem.z | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
| fprodcnlem.w | ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
| fprodcnlem.p | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| fprodcnlem | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcnlem.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑥 ∈ 𝑋 | |
| 3 | 1, 2 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
| 4 | nfcsb1v 3877 | . . . 4 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 | |
| 5 | fprodcnlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 6 | fprodcnlem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
| 7 | 5, 6 | ssfid 9170 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Fin) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ Fin) |
| 9 | fprodcnlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
| 11 | 10 | eldifbd 3918 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑊 ∈ 𝑍) |
| 12 | 6 | sselda 3937 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
| 13 | 12 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
| 14 | fprodcnlem.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
| 16 | fprodcnlem.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 17 | 16 | cnfldtopon 24686 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈ (TopOn‘ℂ)) |
| 19 | fprodcnlem.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) | |
| 20 | cnf2 23152 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | |
| 21 | 15, 18, 19, 20 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 22 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
| 23 | 22 | fmpt 7048 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 24 | 21, 23 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
| 25 | 24 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
| 26 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ 𝑋) | |
| 27 | rspa 3218 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | |
| 28 | 25, 26, 27 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 29 | 13, 28 | syldan 591 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| 30 | csbeq1a 3867 | . . . 4 ⊢ (𝑘 = 𝑊 → 𝐵 = ⦋𝑊 / 𝑘⦌𝐵) | |
| 31 | 10 | eldifad 3917 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ 𝐴) |
| 32 | nfv 1914 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑊 ∈ 𝐴 | |
| 33 | 3, 32 | nfan 1899 | . . . . . . . 8 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) |
| 34 | 4 | nfel1 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ |
| 35 | 33, 34 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
| 36 | eleq1 2816 | . . . . . . . . 9 ⊢ (𝑘 = 𝑊 → (𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴)) | |
| 37 | 36 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴))) |
| 38 | 30 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
| 39 | 37, 38 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ))) |
| 40 | 35, 39, 28 | vtoclg1f 3527 | . . . . . 6 ⊢ (𝑊 ∈ 𝐴 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
| 41 | 40 | anabsi7 671 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
| 42 | 31, 41 | mpdan 687 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
| 43 | 3, 4, 8, 10, 11, 29, 30, 42 | fprodsplitsn 15914 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) |
| 44 | 43 | mpteq2dva 5188 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵))) |
| 45 | fprodcnlem.p | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) | |
| 46 | 9 | eldifad 3917 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐴) |
| 47 | 1, 32 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑊 ∈ 𝐴) |
| 48 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑋 | |
| 49 | 48, 4 | nfmpt 5193 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) |
| 50 | 49 | nfel1 2908 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
| 51 | 47, 50 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 52 | 36 | anbi2d 630 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑊 ∈ 𝐴))) |
| 53 | 30 | mpteq2dv 5189 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵)) |
| 54 | 53 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
| 55 | 52, 54 | imbi12d 344 | . . . . . 6 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 56 | 51, 55, 19 | vtoclg1f 3527 | . . . . 5 ⊢ (𝑊 ∈ 𝐴 → ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
| 57 | 56 | anabsi7 671 | . . . 4 ⊢ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 58 | 46, 57 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 59 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℂ)) |
| 60 | 16 | mpomulcn 24774 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 61 | 60 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 62 | oveq12 7362 | . . 3 ⊢ ((𝑢 = ∏𝑘 ∈ 𝑍 𝐵 ∧ 𝑣 = ⦋𝑊 / 𝑘⦌𝐵) → (𝑢 · 𝑣) = (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) | |
| 63 | 14, 45, 58, 59, 59, 61, 62 | cnmpt12 23570 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
| 64 | 44, 63 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ⦋csb 3853 ∖ cdif 3902 ∪ cun 3903 ⊆ wss 3905 {csn 4579 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Fincfn 8879 ℂcc 11026 · cmul 11033 ∏cprod 15828 TopOpenctopn 17343 ℂfldccnfld 21279 TopOnctopon 22813 Cn ccn 23127 ×t ctx 23463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-prod 15829 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cn 23130 df-cnp 23131 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 |
| This theorem is referenced by: fprodcn 45585 |
| Copyright terms: Public domain | W3C validator |