![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodcnlem | Structured version Visualization version GIF version |
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) Avoid ax-mulf 11264. (Revised by GG, 19-Apr-2025.) |
Ref | Expression |
---|---|
fprodcnlem.1 | ⊢ Ⅎ𝑘𝜑 |
fprodcnlem.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
fprodcnlem.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
fprodcnlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodcnlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
fprodcnlem.z | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
fprodcnlem.w | ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
fprodcnlem.p | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
fprodcnlem | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcnlem.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑘 𝑥 ∈ 𝑋 | |
3 | 1, 2 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
4 | nfcsb1v 3946 | . . . 4 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 | |
5 | fprodcnlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | fprodcnlem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
7 | 5, 6 | ssfid 9329 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Fin) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ Fin) |
9 | fprodcnlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
11 | 10 | eldifbd 3989 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑊 ∈ 𝑍) |
12 | 6 | sselda 4008 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
13 | 12 | adantlr 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
14 | fprodcnlem.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
16 | fprodcnlem.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
17 | 16 | cnfldtopon 24824 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈ (TopOn‘ℂ)) |
19 | fprodcnlem.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) | |
20 | cnf2 23278 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | |
21 | 15, 18, 19, 20 | syl3anc 1371 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
22 | eqid 2740 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
23 | 22 | fmpt 7144 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
24 | 21, 23 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
25 | 24 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
26 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ 𝑋) | |
27 | rspa 3254 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | |
28 | 25, 26, 27 | syl2anc 583 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
29 | 13, 28 | syldan 590 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
30 | csbeq1a 3935 | . . . 4 ⊢ (𝑘 = 𝑊 → 𝐵 = ⦋𝑊 / 𝑘⦌𝐵) | |
31 | 10 | eldifad 3988 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ 𝐴) |
32 | nfv 1913 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑊 ∈ 𝐴 | |
33 | 3, 32 | nfan 1898 | . . . . . . . 8 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) |
34 | 4 | nfel1 2925 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ |
35 | 33, 34 | nfim 1895 | . . . . . . 7 ⊢ Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
36 | eleq1 2832 | . . . . . . . . 9 ⊢ (𝑘 = 𝑊 → (𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴)) | |
37 | 36 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴))) |
38 | 30 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
39 | 37, 38 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ))) |
40 | 35, 39, 28 | vtoclg1f 3582 | . . . . . 6 ⊢ (𝑊 ∈ 𝐴 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
41 | 40 | anabsi7 670 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
42 | 31, 41 | mpdan 686 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
43 | 3, 4, 8, 10, 11, 29, 30, 42 | fprodsplitsn 16037 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) |
44 | 43 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵))) |
45 | fprodcnlem.p | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) | |
46 | 9 | eldifad 3988 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐴) |
47 | 1, 32 | nfan 1898 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑊 ∈ 𝐴) |
48 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑋 | |
49 | 48, 4 | nfmpt 5273 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) |
50 | 49 | nfel1 2925 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
51 | 47, 50 | nfim 1895 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
52 | 36 | anbi2d 629 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑊 ∈ 𝐴))) |
53 | 30 | mpteq2dv 5268 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵)) |
54 | 53 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
55 | 52, 54 | imbi12d 344 | . . . . . 6 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)))) |
56 | 51, 55, 19 | vtoclg1f 3582 | . . . . 5 ⊢ (𝑊 ∈ 𝐴 → ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
57 | 56 | anabsi7 670 | . . . 4 ⊢ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
58 | 46, 57 | mpdan 686 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
59 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℂ)) |
60 | 16 | mpomulcn 24910 | . . . 4 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
61 | 60 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
62 | oveq12 7457 | . . 3 ⊢ ((𝑢 = ∏𝑘 ∈ 𝑍 𝐵 ∧ 𝑣 = ⦋𝑊 / 𝑘⦌𝐵) → (𝑢 · 𝑣) = (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) | |
63 | 14, 45, 58, 59, 59, 61, 62 | cnmpt12 23696 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
64 | 44, 63 | eqeltrd 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ⦋csb 3921 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Fincfn 9003 ℂcc 11182 · cmul 11189 ∏cprod 15951 TopOpenctopn 17481 ℂfldccnfld 21387 TopOnctopon 22937 Cn ccn 23253 ×t ctx 23589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 |
This theorem is referenced by: fprodcn 45521 |
Copyright terms: Public domain | W3C validator |