![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodcnlem | Structured version Visualization version GIF version |
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fprodcnlem.1 | ⊢ Ⅎ𝑘𝜑 |
fprodcnlem.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
fprodcnlem.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
fprodcnlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodcnlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
fprodcnlem.z | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
fprodcnlem.w | ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
fprodcnlem.p | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
fprodcnlem | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcnlem.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘 𝑥 ∈ 𝑋 | |
3 | 1, 2 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
4 | nfcsb1v 3880 | . . . 4 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 | |
5 | fprodcnlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | fprodcnlem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
7 | 5, 6 | ssfid 9211 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Fin) |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ Fin) |
9 | fprodcnlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
11 | 10 | eldifbd 3923 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑊 ∈ 𝑍) |
12 | 6 | sselda 3944 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
13 | 12 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
14 | fprodcnlem.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
15 | 14 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
16 | fprodcnlem.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
17 | 16 | cnfldtopon 24146 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈ (TopOn‘ℂ)) |
19 | fprodcnlem.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) | |
20 | cnf2 22600 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | |
21 | 15, 18, 19, 20 | syl3anc 1371 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
22 | eqid 2736 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
23 | 22 | fmpt 7058 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
24 | 21, 23 | sylibr 233 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
25 | 24 | adantlr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
26 | simplr 767 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ 𝑋) | |
27 | rspa 3231 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | |
28 | 25, 26, 27 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
29 | 13, 28 | syldan 591 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
30 | csbeq1a 3869 | . . . 4 ⊢ (𝑘 = 𝑊 → 𝐵 = ⦋𝑊 / 𝑘⦌𝐵) | |
31 | 10 | eldifad 3922 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ 𝐴) |
32 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → 𝑊 ∈ 𝐴) | |
33 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘𝑊 | |
34 | nfv 1917 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑊 ∈ 𝐴 | |
35 | 3, 34 | nfan 1902 | . . . . . . . 8 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) |
36 | 4 | nfel1 2923 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ |
37 | 35, 36 | nfim 1899 | . . . . . . 7 ⊢ Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
38 | eleq1 2825 | . . . . . . . . 9 ⊢ (𝑘 = 𝑊 → (𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴)) | |
39 | 38 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴))) |
40 | 30 | eleq1d 2822 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
41 | 39, 40 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ))) |
42 | 33, 37, 41, 28 | vtoclgf 3523 | . . . . . 6 ⊢ (𝑊 ∈ 𝐴 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
43 | 32, 42 | mpcom 38 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
44 | 31, 43 | mpdan 685 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
45 | 3, 4, 8, 10, 11, 29, 30, 44 | fprodsplitsn 15872 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) |
46 | 45 | mpteq2dva 5205 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵))) |
47 | fprodcnlem.p | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) | |
48 | 9 | eldifad 3922 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐴) |
49 | 1, 34 | nfan 1902 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑊 ∈ 𝐴) |
50 | nfcv 2907 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑋 | |
51 | 50, 4 | nfmpt 5212 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) |
52 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐽 Cn 𝐾) | |
53 | 51, 52 | nfel 2921 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
54 | 49, 53 | nfim 1899 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
55 | 38 | anbi2d 629 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑊 ∈ 𝐴))) |
56 | 30 | mpteq2dv 5207 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵)) |
57 | 56 | eleq1d 2822 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
58 | 55, 57 | imbi12d 344 | . . . . . 6 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)))) |
59 | 19 | idi 1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
60 | 33, 54, 58, 59 | vtoclgf 3523 | . . . . 5 ⊢ (𝑊 ∈ 𝐴 → ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
61 | 60 | anabsi7 669 | . . . 4 ⊢ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
62 | 48, 61 | mpdan 685 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
63 | 16 | mulcn 24230 | . . . 4 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
64 | 63 | a1i 11 | . . 3 ⊢ (𝜑 → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
65 | 14, 47, 62, 64 | cnmpt12f 23017 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
66 | 46, 65 | eqeltrd 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3064 ⦋csb 3855 ∖ cdif 3907 ∪ cun 3908 ⊆ wss 3910 {csn 4586 ↦ cmpt 5188 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 ℂcc 11049 · cmul 11056 ∏cprod 15788 TopOpenctopn 17303 ℂfldccnfld 20796 TopOnctopon 22259 Cn ccn 22575 ×t ctx 22911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-icc 13271 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-prod 15789 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cn 22578 df-cnp 22579 df-tx 22913 df-hmeo 23106 df-xms 23673 df-ms 23674 df-tms 23675 |
This theorem is referenced by: fprodcn 43831 |
Copyright terms: Public domain | W3C validator |