Step | Hyp | Ref
| Expression |
1 | | fprodcnlem.1 |
. . . . 5
β’
β²ππ |
2 | | nfv 1909 |
. . . . 5
β’
β²π π₯ β π |
3 | 1, 2 | nfan 1894 |
. . . 4
β’
β²π(π β§ π₯ β π) |
4 | | nfcsb1v 3913 |
. . . 4
β’
β²πβ¦π / πβ¦π΅ |
5 | | fprodcnlem.a |
. . . . . 6
β’ (π β π΄ β Fin) |
6 | | fprodcnlem.z |
. . . . . 6
β’ (π β π β π΄) |
7 | 5, 6 | ssfid 9269 |
. . . . 5
β’ (π β π β Fin) |
8 | 7 | adantr 480 |
. . . 4
β’ ((π β§ π₯ β π) β π β Fin) |
9 | | fprodcnlem.w |
. . . . 5
β’ (π β π β (π΄ β π)) |
10 | 9 | adantr 480 |
. . . 4
β’ ((π β§ π₯ β π) β π β (π΄ β π)) |
11 | 10 | eldifbd 3956 |
. . . 4
β’ ((π β§ π₯ β π) β Β¬ π β π) |
12 | 6 | sselda 3977 |
. . . . . 6
β’ ((π β§ π β π) β π β π΄) |
13 | 12 | adantlr 712 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π β π) β π β π΄) |
14 | | fprodcnlem.j |
. . . . . . . . . 10
β’ (π β π½ β (TopOnβπ)) |
15 | 14 | adantr 480 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β π½ β (TopOnβπ)) |
16 | | fprodcnlem.k |
. . . . . . . . . . 11
β’ πΎ =
(TopOpenββfld) |
17 | 16 | cnfldtopon 24654 |
. . . . . . . . . 10
β’ πΎ β
(TopOnββ) |
18 | 17 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β πΎ β
(TopOnββ)) |
19 | | fprodcnlem.b |
. . . . . . . . 9
β’ ((π β§ π β π΄) β (π₯ β π β¦ π΅) β (π½ Cn πΎ)) |
20 | | cnf2 23108 |
. . . . . . . . 9
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnββ) β§ (π₯ β π β¦ π΅) β (π½ Cn πΎ)) β (π₯ β π β¦ π΅):πβΆβ) |
21 | 15, 18, 19, 20 | syl3anc 1368 |
. . . . . . . 8
β’ ((π β§ π β π΄) β (π₯ β π β¦ π΅):πβΆβ) |
22 | | eqid 2726 |
. . . . . . . . 9
β’ (π₯ β π β¦ π΅) = (π₯ β π β¦ π΅) |
23 | 22 | fmpt 7105 |
. . . . . . . 8
β’
(βπ₯ β
π π΅ β β β (π₯ β π β¦ π΅):πβΆβ) |
24 | 21, 23 | sylibr 233 |
. . . . . . 7
β’ ((π β§ π β π΄) β βπ₯ β π π΅ β β) |
25 | 24 | adantlr 712 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π β π΄) β βπ₯ β π π΅ β β) |
26 | | simplr 766 |
. . . . . 6
β’ (((π β§ π₯ β π) β§ π β π΄) β π₯ β π) |
27 | | rspa 3239 |
. . . . . 6
β’
((βπ₯ β
π π΅ β β β§ π₯ β π) β π΅ β β) |
28 | 25, 26, 27 | syl2anc 583 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π β π΄) β π΅ β β) |
29 | 13, 28 | syldan 590 |
. . . 4
β’ (((π β§ π₯ β π) β§ π β π) β π΅ β β) |
30 | | csbeq1a 3902 |
. . . 4
β’ (π = π β π΅ = β¦π / πβ¦π΅) |
31 | 10 | eldifad 3955 |
. . . . 5
β’ ((π β§ π₯ β π) β π β π΄) |
32 | | nfv 1909 |
. . . . . . . . 9
β’
β²π π β π΄ |
33 | 3, 32 | nfan 1894 |
. . . . . . . 8
β’
β²π((π β§ π₯ β π) β§ π β π΄) |
34 | 4 | nfel1 2913 |
. . . . . . . 8
β’
β²πβ¦π / πβ¦π΅ β β |
35 | 33, 34 | nfim 1891 |
. . . . . . 7
β’
β²π(((π β§ π₯ β π) β§ π β π΄) β β¦π / πβ¦π΅ β β) |
36 | | eleq1 2815 |
. . . . . . . . 9
β’ (π = π β (π β π΄ β π β π΄)) |
37 | 36 | anbi2d 628 |
. . . . . . . 8
β’ (π = π β (((π β§ π₯ β π) β§ π β π΄) β ((π β§ π₯ β π) β§ π β π΄))) |
38 | 30 | eleq1d 2812 |
. . . . . . . 8
β’ (π = π β (π΅ β β β β¦π / πβ¦π΅ β β)) |
39 | 37, 38 | imbi12d 344 |
. . . . . . 7
β’ (π = π β ((((π β§ π₯ β π) β§ π β π΄) β π΅ β β) β (((π β§ π₯ β π) β§ π β π΄) β β¦π / πβ¦π΅ β β))) |
40 | 35, 39, 28 | vtoclg1f 3553 |
. . . . . 6
β’ (π β π΄ β (((π β§ π₯ β π) β§ π β π΄) β β¦π / πβ¦π΅ β β)) |
41 | 40 | anabsi7 668 |
. . . . 5
β’ (((π β§ π₯ β π) β§ π β π΄) β β¦π / πβ¦π΅ β β) |
42 | 31, 41 | mpdan 684 |
. . . 4
β’ ((π β§ π₯ β π) β β¦π / πβ¦π΅ β β) |
43 | 3, 4, 8, 10, 11, 29, 30, 42 | fprodsplitsn 15939 |
. . 3
β’ ((π β§ π₯ β π) β βπ β (π βͺ {π})π΅ = (βπ β π π΅ Β· β¦π / πβ¦π΅)) |
44 | 43 | mpteq2dva 5241 |
. 2
β’ (π β (π₯ β π β¦ βπ β (π βͺ {π})π΅) = (π₯ β π β¦ (βπ β π π΅ Β· β¦π / πβ¦π΅))) |
45 | | fprodcnlem.p |
. . 3
β’ (π β (π₯ β π β¦ βπ β π π΅) β (π½ Cn πΎ)) |
46 | 9 | eldifad 3955 |
. . . 4
β’ (π β π β π΄) |
47 | 1, 32 | nfan 1894 |
. . . . . . 7
β’
β²π(π β§ π β π΄) |
48 | | nfcv 2897 |
. . . . . . . . 9
β’
β²ππ |
49 | 48, 4 | nfmpt 5248 |
. . . . . . . 8
β’
β²π(π₯ β π β¦ β¦π / πβ¦π΅) |
50 | 49 | nfel1 2913 |
. . . . . . 7
β’
β²π(π₯ β π β¦ β¦π / πβ¦π΅) β (π½ Cn πΎ) |
51 | 47, 50 | nfim 1891 |
. . . . . 6
β’
β²π((π β§ π β π΄) β (π₯ β π β¦ β¦π / πβ¦π΅) β (π½ Cn πΎ)) |
52 | 36 | anbi2d 628 |
. . . . . . 7
β’ (π = π β ((π β§ π β π΄) β (π β§ π β π΄))) |
53 | 30 | mpteq2dv 5243 |
. . . . . . . 8
β’ (π = π β (π₯ β π β¦ π΅) = (π₯ β π β¦ β¦π / πβ¦π΅)) |
54 | 53 | eleq1d 2812 |
. . . . . . 7
β’ (π = π β ((π₯ β π β¦ π΅) β (π½ Cn πΎ) β (π₯ β π β¦ β¦π / πβ¦π΅) β (π½ Cn πΎ))) |
55 | 52, 54 | imbi12d 344 |
. . . . . 6
β’ (π = π β (((π β§ π β π΄) β (π₯ β π β¦ π΅) β (π½ Cn πΎ)) β ((π β§ π β π΄) β (π₯ β π β¦ β¦π / πβ¦π΅) β (π½ Cn πΎ)))) |
56 | 51, 55, 19 | vtoclg1f 3553 |
. . . . 5
β’ (π β π΄ β ((π β§ π β π΄) β (π₯ β π β¦ β¦π / πβ¦π΅) β (π½ Cn πΎ))) |
57 | 56 | anabsi7 668 |
. . . 4
β’ ((π β§ π β π΄) β (π₯ β π β¦ β¦π / πβ¦π΅) β (π½ Cn πΎ)) |
58 | 46, 57 | mpdan 684 |
. . 3
β’ (π β (π₯ β π β¦ β¦π / πβ¦π΅) β (π½ Cn πΎ)) |
59 | 17 | a1i 11 |
. . 3
β’ (π β πΎ β
(TopOnββ)) |
60 | 16 | mpomulcn 24740 |
. . . 4
β’ (π’ β β, π£ β β β¦ (π’ Β· π£)) β ((πΎ Γt πΎ) Cn πΎ) |
61 | 60 | a1i 11 |
. . 3
β’ (π β (π’ β β, π£ β β β¦ (π’ Β· π£)) β ((πΎ Γt πΎ) Cn πΎ)) |
62 | | oveq12 7414 |
. . 3
β’ ((π’ = βπ β π π΅ β§ π£ = β¦π / πβ¦π΅) β (π’ Β· π£) = (βπ β π π΅ Β· β¦π / πβ¦π΅)) |
63 | 14, 45, 58, 59, 59, 61, 62 | cnmpt12 23526 |
. 2
β’ (π β (π₯ β π β¦ (βπ β π π΅ Β· β¦π / πβ¦π΅)) β (π½ Cn πΎ)) |
64 | 44, 63 | eqeltrd 2827 |
1
β’ (π β (π₯ β π β¦ βπ β (π βͺ {π})π΅) β (π½ Cn πΎ)) |