Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprodcnlem | Structured version Visualization version GIF version |
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
fprodcnlem.1 | ⊢ Ⅎ𝑘𝜑 |
fprodcnlem.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
fprodcnlem.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
fprodcnlem.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodcnlem.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
fprodcnlem.z | ⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
fprodcnlem.w | ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
fprodcnlem.p | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
fprodcnlem | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcnlem.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘 𝑥 ∈ 𝑋 | |
3 | 1, 2 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ 𝑋) |
4 | nfcsb1v 3857 | . . . 4 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 | |
5 | fprodcnlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | fprodcnlem.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ⊆ 𝐴) | |
7 | 5, 6 | ssfid 9042 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Fin) |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ Fin) |
9 | fprodcnlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ (𝐴 ∖ 𝑍)) |
11 | 10 | eldifbd 3900 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑊 ∈ 𝑍) |
12 | 6 | sselda 3921 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
13 | 12 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝐴) |
14 | fprodcnlem.j | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
15 | 14 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
16 | fprodcnlem.k | . . . . . . . . . . 11 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
17 | 16 | cnfldtopon 23946 | . . . . . . . . . 10 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
18 | 17 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈ (TopOn‘ℂ)) |
19 | fprodcnlem.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) | |
20 | cnf2 22400 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | |
21 | 15, 18, 19, 20 | syl3anc 1370 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
22 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | |
23 | 22 | fmpt 6984 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
24 | 21, 23 | sylibr 233 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
25 | 24 | adantlr 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
26 | simplr 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ 𝑋) | |
27 | rspa 3132 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | |
28 | 25, 26, 27 | syl2anc 584 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
29 | 13, 28 | syldan 591 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
30 | csbeq1a 3846 | . . . 4 ⊢ (𝑘 = 𝑊 → 𝐵 = ⦋𝑊 / 𝑘⦌𝐵) | |
31 | 10 | eldifad 3899 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ 𝐴) |
32 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → 𝑊 ∈ 𝐴) | |
33 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘𝑊 | |
34 | nfv 1917 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑊 ∈ 𝐴 | |
35 | 3, 34 | nfan 1902 | . . . . . . . 8 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) |
36 | 4 | nfel1 2923 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ |
37 | 35, 36 | nfim 1899 | . . . . . . 7 ⊢ Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
38 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑘 = 𝑊 → (𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴)) | |
39 | 38 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴))) |
40 | 30 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
41 | 39, 40 | imbi12d 345 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ))) |
42 | 33, 37, 41, 28 | vtoclgf 3503 | . . . . . 6 ⊢ (𝑊 ∈ 𝐴 → (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ)) |
43 | 32, 42 | mpcom 38 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑊 ∈ 𝐴) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
44 | 31, 43 | mpdan 684 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝑊 / 𝑘⦌𝐵 ∈ ℂ) |
45 | 3, 4, 8, 10, 11, 29, 30, 44 | fprodsplitsn 15699 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) |
46 | 45 | mpteq2dva 5174 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵))) |
47 | fprodcnlem.p | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) | |
48 | 9 | eldifad 3899 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐴) |
49 | 1, 34 | nfan 1902 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑊 ∈ 𝐴) |
50 | nfcv 2907 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑋 | |
51 | 50, 4 | nfmpt 5181 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) |
52 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐽 Cn 𝐾) | |
53 | 51, 52 | nfel 2921 | . . . . . . 7 ⊢ Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
54 | 49, 53 | nfim 1899 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
55 | 38 | anbi2d 629 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑊 ∈ 𝐴))) |
56 | 30 | mpteq2dv 5176 | . . . . . . . 8 ⊢ (𝑘 = 𝑊 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵)) |
57 | 56 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑘 = 𝑊 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
58 | 55, 57 | imbi12d 345 | . . . . . 6 ⊢ (𝑘 = 𝑊 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)))) |
59 | 19 | idi 1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
60 | 33, 54, 58, 59 | vtoclgf 3503 | . . . . 5 ⊢ (𝑊 ∈ 𝐴 → ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
61 | 60 | anabsi7 668 | . . . 4 ⊢ ((𝜑 ∧ 𝑊 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
62 | 48, 61 | mpdan 684 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝑊 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
63 | 16 | mulcn 24030 | . . . 4 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
64 | 63 | a1i 11 | . . 3 ⊢ (𝜑 → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
65 | 14, 47, 62, 64 | cnmpt12f 22817 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (∏𝑘 ∈ 𝑍 𝐵 · ⦋𝑊 / 𝑘⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
66 | 46, 65 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ⦋csb 3832 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 {csn 4561 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℂcc 10869 · cmul 10876 ∏cprod 15615 TopOpenctopn 17132 ℂfldccnfld 20597 TopOnctopon 22059 Cn ccn 22375 ×t ctx 22711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-prod 15616 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-cnp 22379 df-tx 22713 df-hmeo 22906 df-xms 23473 df-ms 23474 df-tms 23475 |
This theorem is referenced by: fprodcn 43141 |
Copyright terms: Public domain | W3C validator |