Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcnlem Structured version   Visualization version   GIF version

Theorem fprodcnlem 42241
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodcnlem.1 𝑘𝜑
fprodcnlem.k 𝐾 = (TopOpen‘ℂfld)
fprodcnlem.j (𝜑𝐽 ∈ (TopOn‘𝑋))
fprodcnlem.a (𝜑𝐴 ∈ Fin)
fprodcnlem.b ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
fprodcnlem.z (𝜑𝑍𝐴)
fprodcnlem.w (𝜑𝑊 ∈ (𝐴𝑍))
fprodcnlem.p (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fprodcnlem (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑘,𝑊,𝑥   𝑘,𝑋,𝑥   𝑘,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem fprodcnlem
StepHypRef Expression
1 fprodcnlem.1 . . . . 5 𝑘𝜑
2 nfv 1915 . . . . 5 𝑘 𝑥𝑋
31, 2nfan 1900 . . . 4 𝑘(𝜑𝑥𝑋)
4 nfcsb1v 3852 . . . 4 𝑘𝑊 / 𝑘𝐵
5 fprodcnlem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
6 fprodcnlem.z . . . . . 6 (𝜑𝑍𝐴)
75, 6ssfid 8725 . . . . 5 (𝜑𝑍 ∈ Fin)
87adantr 484 . . . 4 ((𝜑𝑥𝑋) → 𝑍 ∈ Fin)
9 fprodcnlem.w . . . . 5 (𝜑𝑊 ∈ (𝐴𝑍))
109adantr 484 . . . 4 ((𝜑𝑥𝑋) → 𝑊 ∈ (𝐴𝑍))
1110eldifbd 3894 . . . 4 ((𝜑𝑥𝑋) → ¬ 𝑊𝑍)
126sselda 3915 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝐴)
1312adantlr 714 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝑘𝐴)
14 fprodcnlem.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
1514adantr 484 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
16 fprodcnlem.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
1716cnfldtopon 23388 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
1817a1i 11 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
19 fprodcnlem.b . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
20 cnf2 21854 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
2115, 18, 19, 20syl3anc 1368 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
22 eqid 2798 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2322fmpt 6851 . . . . . . . 8 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
2421, 23sylibr 237 . . . . . . 7 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
2524adantlr 714 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
26 simplr 768 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
27 rspa 3171 . . . . . 6 ((∀𝑥𝑋 𝐵 ∈ ℂ ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
2825, 26, 27syl2anc 587 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2913, 28syldan 594 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
30 csbeq1a 3842 . . . 4 (𝑘 = 𝑊𝐵 = 𝑊 / 𝑘𝐵)
3110eldifad 3893 . . . . 5 ((𝜑𝑥𝑋) → 𝑊𝐴)
32 simpr 488 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊𝐴)
33 nfcv 2955 . . . . . . 7 𝑘𝑊
34 nfv 1915 . . . . . . . . 9 𝑘 𝑊𝐴
353, 34nfan 1900 . . . . . . . 8 𝑘((𝜑𝑥𝑋) ∧ 𝑊𝐴)
364nfel1 2971 . . . . . . . 8 𝑘𝑊 / 𝑘𝐵 ∈ ℂ
3735, 36nfim 1897 . . . . . . 7 𝑘(((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
38 eleq1 2877 . . . . . . . . 9 (𝑘 = 𝑊 → (𝑘𝐴𝑊𝐴))
3938anbi2d 631 . . . . . . . 8 (𝑘 = 𝑊 → (((𝜑𝑥𝑋) ∧ 𝑘𝐴) ↔ ((𝜑𝑥𝑋) ∧ 𝑊𝐴)))
4030eleq1d 2874 . . . . . . . 8 (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ 𝑊 / 𝑘𝐵 ∈ ℂ))
4139, 40imbi12d 348 . . . . . . 7 (𝑘 = 𝑊 → ((((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)))
4233, 37, 41, 28vtoclgf 3513 . . . . . 6 (𝑊𝐴 → (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ))
4332, 42mpcom 38 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
4431, 43mpdan 686 . . . 4 ((𝜑𝑥𝑋) → 𝑊 / 𝑘𝐵 ∈ ℂ)
453, 4, 8, 10, 11, 29, 30, 44fprodsplitsn 15335 . . 3 ((𝜑𝑥𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵))
4645mpteq2dva 5125 . 2 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)))
47 fprodcnlem.p . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
489eldifad 3893 . . . 4 (𝜑𝑊𝐴)
491, 34nfan 1900 . . . . . . 7 𝑘(𝜑𝑊𝐴)
50 nfcv 2955 . . . . . . . . 9 𝑘𝑋
5150, 4nfmpt 5127 . . . . . . . 8 𝑘(𝑥𝑋𝑊 / 𝑘𝐵)
52 nfcv 2955 . . . . . . . 8 𝑘(𝐽 Cn 𝐾)
5351, 52nfel 2969 . . . . . . 7 𝑘(𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
5449, 53nfim 1897 . . . . . 6 𝑘((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
5538anbi2d 631 . . . . . . 7 (𝑘 = 𝑊 → ((𝜑𝑘𝐴) ↔ (𝜑𝑊𝐴)))
5630mpteq2dv 5126 . . . . . . . 8 (𝑘 = 𝑊 → (𝑥𝑋𝐵) = (𝑥𝑋𝑊 / 𝑘𝐵))
5756eleq1d 2874 . . . . . . 7 (𝑘 = 𝑊 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
5855, 57imbi12d 348 . . . . . 6 (𝑘 = 𝑊 → (((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))))
5919idi 1 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
6033, 54, 58, 59vtoclgf 3513 . . . . 5 (𝑊𝐴 → ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
6160anabsi7 670 . . . 4 ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6248, 61mpdan 686 . . 3 (𝜑 → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6316mulcn 23472 . . . 4 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6463a1i 11 . . 3 (𝜑 → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
6514, 47, 62, 64cnmpt12f 22271 . 2 (𝜑 → (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)) ∈ (𝐽 Cn 𝐾))
6646, 65eqeltrd 2890 1 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wral 3106  csb 3828  cdif 3878  cun 3879  wss 3881  {csn 4525  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524   · cmul 10531  cprod 15251  TopOpenctopn 16687  fldccnfld 20091  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929
This theorem is referenced by:  fprodcn  42242
  Copyright terms: Public domain W3C validator