Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcnlem Structured version   Visualization version   GIF version

Theorem fprodcnlem 44088
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodcnlem.1 𝑘𝜑
fprodcnlem.k 𝐾 = (TopOpen‘ℂfld)
fprodcnlem.j (𝜑𝐽 ∈ (TopOn‘𝑋))
fprodcnlem.a (𝜑𝐴 ∈ Fin)
fprodcnlem.b ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
fprodcnlem.z (𝜑𝑍𝐴)
fprodcnlem.w (𝜑𝑊 ∈ (𝐴𝑍))
fprodcnlem.p (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fprodcnlem (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑘,𝑊,𝑥   𝑘,𝑋,𝑥   𝑘,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem fprodcnlem
StepHypRef Expression
1 fprodcnlem.1 . . . . 5 𝑘𝜑
2 nfv 1917 . . . . 5 𝑘 𝑥𝑋
31, 2nfan 1902 . . . 4 𝑘(𝜑𝑥𝑋)
4 nfcsb1v 3914 . . . 4 𝑘𝑊 / 𝑘𝐵
5 fprodcnlem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
6 fprodcnlem.z . . . . . 6 (𝜑𝑍𝐴)
75, 6ssfid 9250 . . . . 5 (𝜑𝑍 ∈ Fin)
87adantr 481 . . . 4 ((𝜑𝑥𝑋) → 𝑍 ∈ Fin)
9 fprodcnlem.w . . . . 5 (𝜑𝑊 ∈ (𝐴𝑍))
109adantr 481 . . . 4 ((𝜑𝑥𝑋) → 𝑊 ∈ (𝐴𝑍))
1110eldifbd 3957 . . . 4 ((𝜑𝑥𝑋) → ¬ 𝑊𝑍)
126sselda 3978 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝐴)
1312adantlr 713 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝑘𝐴)
14 fprodcnlem.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
1514adantr 481 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
16 fprodcnlem.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
1716cnfldtopon 24228 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
1817a1i 11 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
19 fprodcnlem.b . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
20 cnf2 22682 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
2115, 18, 19, 20syl3anc 1371 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
22 eqid 2731 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2322fmpt 7094 . . . . . . . 8 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
2421, 23sylibr 233 . . . . . . 7 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
2524adantlr 713 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
26 simplr 767 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
27 rspa 3244 . . . . . 6 ((∀𝑥𝑋 𝐵 ∈ ℂ ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
2825, 26, 27syl2anc 584 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2913, 28syldan 591 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
30 csbeq1a 3903 . . . 4 (𝑘 = 𝑊𝐵 = 𝑊 / 𝑘𝐵)
3110eldifad 3956 . . . . 5 ((𝜑𝑥𝑋) → 𝑊𝐴)
32 simpr 485 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊𝐴)
33 nfcv 2902 . . . . . . 7 𝑘𝑊
34 nfv 1917 . . . . . . . . 9 𝑘 𝑊𝐴
353, 34nfan 1902 . . . . . . . 8 𝑘((𝜑𝑥𝑋) ∧ 𝑊𝐴)
364nfel1 2918 . . . . . . . 8 𝑘𝑊 / 𝑘𝐵 ∈ ℂ
3735, 36nfim 1899 . . . . . . 7 𝑘(((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
38 eleq1 2820 . . . . . . . . 9 (𝑘 = 𝑊 → (𝑘𝐴𝑊𝐴))
3938anbi2d 629 . . . . . . . 8 (𝑘 = 𝑊 → (((𝜑𝑥𝑋) ∧ 𝑘𝐴) ↔ ((𝜑𝑥𝑋) ∧ 𝑊𝐴)))
4030eleq1d 2817 . . . . . . . 8 (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ 𝑊 / 𝑘𝐵 ∈ ℂ))
4139, 40imbi12d 344 . . . . . . 7 (𝑘 = 𝑊 → ((((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)))
4233, 37, 41, 28vtoclgf 3551 . . . . . 6 (𝑊𝐴 → (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ))
4332, 42mpcom 38 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
4431, 43mpdan 685 . . . 4 ((𝜑𝑥𝑋) → 𝑊 / 𝑘𝐵 ∈ ℂ)
453, 4, 8, 10, 11, 29, 30, 44fprodsplitsn 15915 . . 3 ((𝜑𝑥𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵))
4645mpteq2dva 5241 . 2 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)))
47 fprodcnlem.p . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
489eldifad 3956 . . . 4 (𝜑𝑊𝐴)
491, 34nfan 1902 . . . . . . 7 𝑘(𝜑𝑊𝐴)
50 nfcv 2902 . . . . . . . . 9 𝑘𝑋
5150, 4nfmpt 5248 . . . . . . . 8 𝑘(𝑥𝑋𝑊 / 𝑘𝐵)
52 nfcv 2902 . . . . . . . 8 𝑘(𝐽 Cn 𝐾)
5351, 52nfel 2916 . . . . . . 7 𝑘(𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
5449, 53nfim 1899 . . . . . 6 𝑘((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
5538anbi2d 629 . . . . . . 7 (𝑘 = 𝑊 → ((𝜑𝑘𝐴) ↔ (𝜑𝑊𝐴)))
5630mpteq2dv 5243 . . . . . . . 8 (𝑘 = 𝑊 → (𝑥𝑋𝐵) = (𝑥𝑋𝑊 / 𝑘𝐵))
5756eleq1d 2817 . . . . . . 7 (𝑘 = 𝑊 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
5855, 57imbi12d 344 . . . . . 6 (𝑘 = 𝑊 → (((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))))
5919idi 1 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
6033, 54, 58, 59vtoclgf 3551 . . . . 5 (𝑊𝐴 → ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
6160anabsi7 669 . . . 4 ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6248, 61mpdan 685 . . 3 (𝜑 → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6316mulcn 24312 . . . 4 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6463a1i 11 . . 3 (𝜑 → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
6514, 47, 62, 64cnmpt12f 23099 . 2 (𝜑 → (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)) ∈ (𝐽 Cn 𝐾))
6646, 65eqeltrd 2832 1 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wral 3060  csb 3889  cdif 3941  cun 3942  wss 3944  {csn 4622  cmpt 5224  wf 6528  cfv 6532  (class class class)co 7393  Fincfn 8922  cc 11090   · cmul 11097  cprod 15831  TopOpenctopn 17349  fldccnfld 20878  TopOnctopon 22341   Cn ccn 22657   ×t ctx 22993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-icc 13313  df-fz 13467  df-fzo 13610  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-prod 15832  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cn 22660  df-cnp 22661  df-tx 22995  df-hmeo 23188  df-xms 23755  df-ms 23756  df-tms 23757
This theorem is referenced by:  fprodcn  44089
  Copyright terms: Public domain W3C validator