Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodcnlem Structured version   Visualization version   GIF version

Theorem fprodcnlem 41900
Description: A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
fprodcnlem.1 𝑘𝜑
fprodcnlem.k 𝐾 = (TopOpen‘ℂfld)
fprodcnlem.j (𝜑𝐽 ∈ (TopOn‘𝑋))
fprodcnlem.a (𝜑𝐴 ∈ Fin)
fprodcnlem.b ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
fprodcnlem.z (𝜑𝑍𝐴)
fprodcnlem.w (𝜑𝑊 ∈ (𝐴𝑍))
fprodcnlem.p (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fprodcnlem (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑘,𝑊,𝑥   𝑘,𝑋,𝑥   𝑘,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem fprodcnlem
StepHypRef Expression
1 fprodcnlem.1 . . . . 5 𝑘𝜑
2 nfv 1915 . . . . 5 𝑘 𝑥𝑋
31, 2nfan 1900 . . . 4 𝑘(𝜑𝑥𝑋)
4 nfcsb1v 3907 . . . 4 𝑘𝑊 / 𝑘𝐵
5 fprodcnlem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
6 fprodcnlem.z . . . . . 6 (𝜑𝑍𝐴)
75, 6ssfid 8741 . . . . 5 (𝜑𝑍 ∈ Fin)
87adantr 483 . . . 4 ((𝜑𝑥𝑋) → 𝑍 ∈ Fin)
9 fprodcnlem.w . . . . 5 (𝜑𝑊 ∈ (𝐴𝑍))
109adantr 483 . . . 4 ((𝜑𝑥𝑋) → 𝑊 ∈ (𝐴𝑍))
1110eldifbd 3949 . . . 4 ((𝜑𝑥𝑋) → ¬ 𝑊𝑍)
126sselda 3967 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝐴)
1312adantlr 713 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝑘𝐴)
14 fprodcnlem.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
1514adantr 483 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
16 fprodcnlem.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
1716cnfldtopon 23391 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
1817a1i 11 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
19 fprodcnlem.b . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
20 cnf2 21857 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
2115, 18, 19, 20syl3anc 1367 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
22 eqid 2821 . . . . . . . . 9 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2322fmpt 6874 . . . . . . . 8 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
2421, 23sylibr 236 . . . . . . 7 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
2524adantlr 713 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
26 simplr 767 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝑥𝑋)
27 rspa 3206 . . . . . 6 ((∀𝑥𝑋 𝐵 ∈ ℂ ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
2825, 26, 27syl2anc 586 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2913, 28syldan 593 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑘𝑍) → 𝐵 ∈ ℂ)
30 csbeq1a 3897 . . . 4 (𝑘 = 𝑊𝐵 = 𝑊 / 𝑘𝐵)
3110eldifad 3948 . . . . 5 ((𝜑𝑥𝑋) → 𝑊𝐴)
32 simpr 487 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊𝐴)
33 nfcv 2977 . . . . . . 7 𝑘𝑊
34 nfv 1915 . . . . . . . . 9 𝑘 𝑊𝐴
353, 34nfan 1900 . . . . . . . 8 𝑘((𝜑𝑥𝑋) ∧ 𝑊𝐴)
364nfel1 2994 . . . . . . . 8 𝑘𝑊 / 𝑘𝐵 ∈ ℂ
3735, 36nfim 1897 . . . . . . 7 𝑘(((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
38 eleq1 2900 . . . . . . . . 9 (𝑘 = 𝑊 → (𝑘𝐴𝑊𝐴))
3938anbi2d 630 . . . . . . . 8 (𝑘 = 𝑊 → (((𝜑𝑥𝑋) ∧ 𝑘𝐴) ↔ ((𝜑𝑥𝑋) ∧ 𝑊𝐴)))
4030eleq1d 2897 . . . . . . . 8 (𝑘 = 𝑊 → (𝐵 ∈ ℂ ↔ 𝑊 / 𝑘𝐵 ∈ ℂ))
4139, 40imbi12d 347 . . . . . . 7 (𝑘 = 𝑊 → ((((𝜑𝑥𝑋) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ) ↔ (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)))
4233, 37, 41, 28vtoclgf 3565 . . . . . 6 (𝑊𝐴 → (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ))
4332, 42mpcom 38 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑊𝐴) → 𝑊 / 𝑘𝐵 ∈ ℂ)
4431, 43mpdan 685 . . . 4 ((𝜑𝑥𝑋) → 𝑊 / 𝑘𝐵 ∈ ℂ)
453, 4, 8, 10, 11, 29, 30, 44fprodsplitsn 15343 . . 3 ((𝜑𝑥𝑋) → ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵 = (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵))
4645mpteq2dva 5161 . 2 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) = (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)))
47 fprodcnlem.p . . 3 (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))
489eldifad 3948 . . . 4 (𝜑𝑊𝐴)
491, 34nfan 1900 . . . . . . 7 𝑘(𝜑𝑊𝐴)
50 nfcv 2977 . . . . . . . . 9 𝑘𝑋
5150, 4nfmpt 5163 . . . . . . . 8 𝑘(𝑥𝑋𝑊 / 𝑘𝐵)
52 nfcv 2977 . . . . . . . 8 𝑘(𝐽 Cn 𝐾)
5351, 52nfel 2992 . . . . . . 7 𝑘(𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
5449, 53nfim 1897 . . . . . 6 𝑘((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
5538anbi2d 630 . . . . . . 7 (𝑘 = 𝑊 → ((𝜑𝑘𝐴) ↔ (𝜑𝑊𝐴)))
5630mpteq2dv 5162 . . . . . . . 8 (𝑘 = 𝑊 → (𝑥𝑋𝐵) = (𝑥𝑋𝑊 / 𝑘𝐵))
5756eleq1d 2897 . . . . . . 7 (𝑘 = 𝑊 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
5855, 57imbi12d 347 . . . . . 6 (𝑘 = 𝑊 → (((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))))
5919idi 1 . . . . . 6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
6033, 54, 58, 59vtoclgf 3565 . . . . 5 (𝑊𝐴 → ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
6160anabsi7 669 . . . 4 ((𝜑𝑊𝐴) → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6248, 61mpdan 685 . . 3 (𝜑 → (𝑥𝑋𝑊 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
6316mulcn 23475 . . . 4 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
6463a1i 11 . . 3 (𝜑 → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
6514, 47, 62, 64cnmpt12f 22274 . 2 (𝜑 → (𝑥𝑋 ↦ (∏𝑘𝑍 𝐵 · 𝑊 / 𝑘𝐵)) ∈ (𝐽 Cn 𝐾))
6646, 65eqeltrd 2913 1 (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  wral 3138  csb 3883  cdif 3933  cun 3934  wss 3936  {csn 4567  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  cc 10535   · cmul 10542  cprod 15259  TopOpenctopn 16695  fldccnfld 20545  TopOnctopon 21518   Cn ccn 21832   ×t ctx 22168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932
This theorem is referenced by:  fprodcn  41901
  Copyright terms: Public domain W3C validator