MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfi Structured version   Visualization version   GIF version

Theorem fnfi 8925
Description: A version of fnex 7075 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)

Proof of Theorem fnfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 6535 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 480 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) = 𝐹)
3 reseq2 5875 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 ↾ ∅))
43eleq1d 2823 . . . . 5 (𝑥 = ∅ → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ ∅) ∈ Fin))
54imbi2d 340 . . . 4 (𝑥 = ∅ → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)))
6 reseq2 5875 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76eleq1d 2823 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
87imbi2d 340 . . . 4 (𝑥 = 𝑦 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin)))
9 reseq2 5875 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
109eleq1d 2823 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
1110imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
12 reseq2 5875 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1312eleq1d 2823 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝐴) ∈ Fin))
1413imbi2d 340 . . . 4 (𝑥 = 𝐴 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)))
15 res0 5884 . . . . . 6 (𝐹 ↾ ∅) = ∅
16 0fin 8916 . . . . . 6 ∅ ∈ Fin
1715, 16eqeltri 2835 . . . . 5 (𝐹 ↾ ∅) ∈ Fin
1817a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)
19 resundi 5894 . . . . . . . 8 (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧}))
20 snfi 8788 . . . . . . . . . 10 {⟨𝑧, (𝐹𝑧)⟩} ∈ Fin
21 fnfun 6517 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → Fun 𝐹)
22 funressn 7013 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2321, 22syl 17 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2423adantr 480 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
25 ssfi 8918 . . . . . . . . . 10 (({⟨𝑧, (𝐹𝑧)⟩} ∈ Fin ∧ (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩}) → (𝐹 ↾ {𝑧}) ∈ Fin)
2620, 24, 25sylancr 586 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ∈ Fin)
27 unfi 8917 . . . . . . . . 9 (((𝐹𝑦) ∈ Fin ∧ (𝐹 ↾ {𝑧}) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2826, 27sylan2 592 . . . . . . . 8 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2919, 28eqeltrid 2843 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)
3029expcom 413 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → ((𝐹𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3130a2i 14 . . . . 5 (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3231a1i 11 . . . 4 (𝑦 ∈ Fin → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
335, 8, 11, 14, 18, 32findcard2 8909 . . 3 (𝐴 ∈ Fin → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin))
3433anabsi7 667 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
352, 34eqeltrrd 2840 1 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  wss 3883  c0 4253  {csn 4558  cop 4564  cres 5582  Fun wfun 6412   Fn wfn 6413  cfv 6418  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by:  f1oenfi  8926  f1oenfirn  8927  f1domfi  8928  sbthfilem  8941  fundmfibi  9028  resfnfinfin  9029  unirnffid  9041  mptfi  9048  seqf1olem2  13691  seqf1o  13692  wrdfin  14163  isstruct2  16778  xpsfrnel  17190  cmpcref  31702  carsggect  32185  ptrecube  35704  ftc1anclem3  35779  sstotbnd2  35859  prdstotbnd  35879  ffi  42598  stoweidlem59  43490  fourierdlem42  43580  fourierdlem54  43591
  Copyright terms: Public domain W3C validator