Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfi Structured version   Visualization version   GIF version

Theorem fnfi 8842
 Description: A version of fnex 6977 for finite sets that does not require Replacement. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)

Proof of Theorem fnfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 6454 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 484 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) = 𝐹)
3 reseq2 5823 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 ↾ ∅))
43eleq1d 2836 . . . . 5 (𝑥 = ∅ → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ ∅) ∈ Fin))
54imbi2d 344 . . . 4 (𝑥 = ∅ → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)))
6 reseq2 5823 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76eleq1d 2836 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
87imbi2d 344 . . . 4 (𝑥 = 𝑦 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin)))
9 reseq2 5823 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
109eleq1d 2836 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
1110imbi2d 344 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
12 reseq2 5823 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1312eleq1d 2836 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝐴) ∈ Fin))
1413imbi2d 344 . . . 4 (𝑥 = 𝐴 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)))
15 res0 5832 . . . . . 6 (𝐹 ↾ ∅) = ∅
16 0fin 8753 . . . . . 6 ∅ ∈ Fin
1715, 16eqeltri 2848 . . . . 5 (𝐹 ↾ ∅) ∈ Fin
1817a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)
19 resundi 5842 . . . . . . . 8 (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧}))
20 snfi 8627 . . . . . . . . . 10 {⟨𝑧, (𝐹𝑧)⟩} ∈ Fin
21 fnfun 6439 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → Fun 𝐹)
22 funressn 6918 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2321, 22syl 17 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2423adantr 484 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
25 ssfi 8755 . . . . . . . . . 10 (({⟨𝑧, (𝐹𝑧)⟩} ∈ Fin ∧ (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩}) → (𝐹 ↾ {𝑧}) ∈ Fin)
2620, 24, 25sylancr 590 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ∈ Fin)
27 unfi 8754 . . . . . . . . 9 (((𝐹𝑦) ∈ Fin ∧ (𝐹 ↾ {𝑧}) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2826, 27sylan2 595 . . . . . . . 8 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2919, 28eqeltrid 2856 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)
3029expcom 417 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → ((𝐹𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3130a2i 14 . . . . 5 (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3231a1i 11 . . . 4 (𝑦 ∈ Fin → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
335, 8, 11, 14, 18, 32findcard2 8748 . . 3 (𝐴 ∈ Fin → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin))
3433anabsi7 670 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
352, 34eqeltrrd 2853 1 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∪ cun 3858   ⊆ wss 3860  ∅c0 4227  {csn 4525  ⟨cop 4531   ↾ cres 5530  Fun wfun 6334   Fn wfn 6335  ‘cfv 6340  Fincfn 8540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-om 7586  df-1o 8118  df-en 8541  df-fin 8544 This theorem is referenced by:  fundmfibi  8849  resfnfinfin  8850  unirnffid  8862  mptfi  8869  seqf1olem2  13473  seqf1o  13474  wrdfin  13944  isstruct2  16565  xpsfrnel  16907  cmpcref  31334  carsggect  31817  ptrecube  35372  ftc1anclem3  35447  sstotbnd2  35527  prdstotbnd  35547  ffi  42213  stoweidlem59  43112  fourierdlem42  43202  fourierdlem54  43213
 Copyright terms: Public domain W3C validator