MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfi Structured version   Visualization version   GIF version

Theorem fnfi 9092
Description: A version of fnex 7153 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)

Proof of Theorem fnfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 6601 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 480 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) = 𝐹)
3 reseq2 5925 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 ↾ ∅))
43eleq1d 2813 . . . . 5 (𝑥 = ∅ → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ ∅) ∈ Fin))
54imbi2d 340 . . . 4 (𝑥 = ∅ → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)))
6 reseq2 5925 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76eleq1d 2813 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
87imbi2d 340 . . . 4 (𝑥 = 𝑦 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin)))
9 reseq2 5925 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
109eleq1d 2813 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
1110imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
12 reseq2 5925 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1312eleq1d 2813 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝐴) ∈ Fin))
1413imbi2d 340 . . . 4 (𝑥 = 𝐴 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)))
15 res0 5934 . . . . . 6 (𝐹 ↾ ∅) = ∅
16 0fi 8967 . . . . . 6 ∅ ∈ Fin
1715, 16eqeltri 2824 . . . . 5 (𝐹 ↾ ∅) ∈ Fin
1817a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)
19 resundi 5944 . . . . . . . 8 (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧}))
20 snfi 8968 . . . . . . . . . 10 {⟨𝑧, (𝐹𝑧)⟩} ∈ Fin
21 fnfun 6582 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → Fun 𝐹)
22 funressn 7093 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2321, 22syl 17 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2423adantr 480 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
25 ssfi 9087 . . . . . . . . . 10 (({⟨𝑧, (𝐹𝑧)⟩} ∈ Fin ∧ (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩}) → (𝐹 ↾ {𝑧}) ∈ Fin)
2620, 24, 25sylancr 587 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ∈ Fin)
27 unfi 9085 . . . . . . . . 9 (((𝐹𝑦) ∈ Fin ∧ (𝐹 ↾ {𝑧}) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2826, 27sylan2 593 . . . . . . . 8 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2919, 28eqeltrid 2832 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)
3029expcom 413 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → ((𝐹𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3130a2i 14 . . . . 5 (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3231a1i 11 . . . 4 (𝑦 ∈ Fin → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
335, 8, 11, 14, 18, 32findcard2 9078 . . 3 (𝐴 ∈ Fin → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin))
3433anabsi7 671 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
352, 34eqeltrrd 2829 1 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  wss 3903  c0 4284  {csn 4577  cop 4583  cres 5621  Fun wfun 6476   Fn wfn 6477  cfv 6482  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-fin 8876
This theorem is referenced by:  f1oenfi  9093  f1oenfirn  9094  f1domfi  9095  f1domfi2  9096  sbthfilem  9112  fodomfir  9218  fundmfibi  9226  resfnfinfin  9227  unirnffid  9237  mptfi  9241  seqf1olem2  13949  seqf1o  13950  wrdfin  14439  isstruct2  17060  xpsfrnel  17466  cyclnumvtx  29745  cmpcref  33817  carsggect  34286  ptrecube  37600  ftc1anclem3  37675  sstotbnd2  37754  prdstotbnd  37774  cantnfub  43294  cantnfub2  43295  ffi  45151  stoweidlem59  46040  fourierdlem42  46130  fourierdlem54  46141
  Copyright terms: Public domain W3C validator