MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfi Structured version   Visualization version   GIF version

Theorem fnfi 9244
Description: A version of fnex 7254 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)

Proof of Theorem fnfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 6699 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 480 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) = 𝐹)
3 reseq2 6004 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 ↾ ∅))
43eleq1d 2829 . . . . 5 (𝑥 = ∅ → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ ∅) ∈ Fin))
54imbi2d 340 . . . 4 (𝑥 = ∅ → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)))
6 reseq2 6004 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
87imbi2d 340 . . . 4 (𝑥 = 𝑦 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin)))
9 reseq2 6004 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
109eleq1d 2829 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
1110imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
12 reseq2 6004 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1312eleq1d 2829 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝐴) ∈ Fin))
1413imbi2d 340 . . . 4 (𝑥 = 𝐴 → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑥) ∈ Fin) ↔ ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)))
15 res0 6013 . . . . . 6 (𝐹 ↾ ∅) = ∅
16 0fi 9108 . . . . . 6 ∅ ∈ Fin
1715, 16eqeltri 2840 . . . . 5 (𝐹 ↾ ∅) ∈ Fin
1817a1i 11 . . . 4 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)
19 resundi 6023 . . . . . . . 8 (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧}))
20 snfi 9109 . . . . . . . . . 10 {⟨𝑧, (𝐹𝑧)⟩} ∈ Fin
21 fnfun 6679 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → Fun 𝐹)
22 funressn 7193 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2321, 22syl 17 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
2423adantr 480 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
25 ssfi 9240 . . . . . . . . . 10 (({⟨𝑧, (𝐹𝑧)⟩} ∈ Fin ∧ (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩}) → (𝐹 ↾ {𝑧}) ∈ Fin)
2620, 24, 25sylancr 586 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ {𝑧}) ∈ Fin)
27 unfi 9238 . . . . . . . . 9 (((𝐹𝑦) ∈ Fin ∧ (𝐹 ↾ {𝑧}) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2826, 27sylan2 592 . . . . . . . 8 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
2919, 28eqeltrid 2848 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ (𝐹 Fn 𝐴𝐴 ∈ Fin)) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)
3029expcom 413 . . . . . 6 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → ((𝐹𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3130a2i 14 . . . . 5 (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
3231a1i 11 . . . 4 (𝑦 ∈ Fin → (((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝑦) ∈ Fin) → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)))
335, 8, 11, 14, 18, 32findcard2 9230 . . 3 (𝐴 ∈ Fin → ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin))
3433anabsi7 670 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
352, 34eqeltrrd 2845 1 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  wss 3976  c0 4352  {csn 4648  cop 4654  cres 5702  Fun wfun 6567   Fn wfn 6568  cfv 6573  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-fin 9007
This theorem is referenced by:  f1oenfi  9245  f1oenfirn  9246  f1domfi  9247  f1domfi2  9248  sbthfilem  9264  fodomfir  9396  fundmfibi  9404  resfnfinfin  9405  unirnffid  9415  mptfi  9421  seqf1olem2  14093  seqf1o  14094  wrdfin  14580  isstruct2  17196  xpsfrnel  17622  cmpcref  33796  carsggect  34283  ptrecube  37580  ftc1anclem3  37655  sstotbnd2  37734  prdstotbnd  37754  cantnfub  43283  cantnfub2  43284  ffi  45080  stoweidlem59  45980  fourierdlem42  46070  fourierdlem54  46081
  Copyright terms: Public domain W3C validator