Step | Hyp | Ref
| Expression |
1 | | fmul01.6 |
. 2
⊢ (𝜑 → 𝐾 ∈ (𝐿...𝑀)) |
2 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝐿 → (𝐴‘𝑘) = (𝐴‘𝐿)) |
3 | 2 | breq2d 5086 |
. . . . 5
⊢ (𝑘 = 𝐿 → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘𝐿))) |
4 | 2 | breq1d 5084 |
. . . . 5
⊢ (𝑘 = 𝐿 → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘𝐿) ≤ 1)) |
5 | 3, 4 | anbi12d 631 |
. . . 4
⊢ (𝑘 = 𝐿 → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1))) |
6 | 5 | imbi2d 341 |
. . 3
⊢ (𝑘 = 𝐿 → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1)))) |
7 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐴‘𝑘) = (𝐴‘𝑗)) |
8 | 7 | breq2d 5086 |
. . . . 5
⊢ (𝑘 = 𝑗 → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘𝑗))) |
9 | 7 | breq1d 5084 |
. . . . 5
⊢ (𝑘 = 𝑗 → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘𝑗) ≤ 1)) |
10 | 8, 9 | anbi12d 631 |
. . . 4
⊢ (𝑘 = 𝑗 → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) |
11 | 10 | imbi2d 341 |
. . 3
⊢ (𝑘 = 𝑗 → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)))) |
12 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (𝐴‘𝑘) = (𝐴‘(𝑗 + 1))) |
13 | 12 | breq2d 5086 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘(𝑗 + 1)))) |
14 | 12 | breq1d 5084 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘(𝑗 + 1)) ≤ 1)) |
15 | 13, 14 | anbi12d 631 |
. . . 4
⊢ (𝑘 = (𝑗 + 1) → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1))) |
16 | 15 | imbi2d 341 |
. . 3
⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1)))) |
17 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝐴‘𝑘) = (𝐴‘𝐾)) |
18 | 17 | breq2d 5086 |
. . . . 5
⊢ (𝑘 = 𝐾 → (0 ≤ (𝐴‘𝑘) ↔ 0 ≤ (𝐴‘𝐾))) |
19 | 17 | breq1d 5084 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝐴‘𝑘) ≤ 1 ↔ (𝐴‘𝐾) ≤ 1)) |
20 | 18, 19 | anbi12d 631 |
. . . 4
⊢ (𝑘 = 𝐾 → ((0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1) ↔ (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1))) |
21 | 20 | imbi2d 341 |
. . 3
⊢ (𝑘 = 𝐾 → ((𝜑 → (0 ≤ (𝐴‘𝑘) ∧ (𝐴‘𝑘) ≤ 1)) ↔ (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1)))) |
22 | | fmul01.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ ℤ) |
23 | | fmul01.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) |
24 | | eluzelz 12592 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → 𝑀 ∈ ℤ) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
26 | 22 | zred 12426 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ ℝ) |
27 | 26 | leidd 11541 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ≤ 𝐿) |
28 | | eluz 12596 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈
(ℤ≥‘𝐿) ↔ 𝐿 ≤ 𝑀)) |
29 | 22, 25, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ (ℤ≥‘𝐿) ↔ 𝐿 ≤ 𝑀)) |
30 | 23, 29 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ≤ 𝑀) |
31 | 22, 25, 22, 27, 30 | elfzd 13247 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (𝐿...𝑀)) |
32 | 31 | ancli 549 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∧ 𝐿 ∈ (𝐿...𝑀))) |
33 | | fmul01.2 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝜑 |
34 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝐿 ∈ (𝐿...𝑀) |
35 | 33, 34 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) |
36 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑖0 |
37 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑖
≤ |
38 | | fmul01.1 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝐵 |
39 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝐿 |
40 | 38, 39 | nffv 6784 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝐵‘𝐿) |
41 | 36, 37, 40 | nfbr 5121 |
. . . . . . . . 9
⊢
Ⅎ𝑖0 ≤
(𝐵‘𝐿) |
42 | 35, 41 | nfim 1899 |
. . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿)) |
43 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐿 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝐿 ∈ (𝐿...𝑀))) |
44 | 43 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑖 = 𝐿 → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)))) |
45 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐿 → (𝐵‘𝑖) = (𝐵‘𝐿)) |
46 | 45 | breq2d 5086 |
. . . . . . . . 9
⊢ (𝑖 = 𝐿 → (0 ≤ (𝐵‘𝑖) ↔ 0 ≤ (𝐵‘𝐿))) |
47 | 44, 46 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑖 = 𝐿 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) ↔ ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿)))) |
48 | | fmul01.8 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
49 | 42, 47, 48 | vtoclg1f 3504 |
. . . . . . 7
⊢ (𝐿 ∈ (𝐿...𝑀) → ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝐿))) |
50 | 31, 32, 49 | sylc 65 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝐵‘𝐿)) |
51 | | fmul01.3 |
. . . . . . . 8
⊢ 𝐴 = seq𝐿( · , 𝐵) |
52 | 51 | fveq1i 6775 |
. . . . . . 7
⊢ (𝐴‘𝐿) = (seq𝐿( · , 𝐵)‘𝐿) |
53 | | seq1 13734 |
. . . . . . . 8
⊢ (𝐿 ∈ ℤ → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵‘𝐿)) |
54 | 22, 53 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (seq𝐿( · , 𝐵)‘𝐿) = (𝐵‘𝐿)) |
55 | 52, 54 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝐿) = (𝐵‘𝐿)) |
56 | 50, 55 | breqtrrd 5102 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝐴‘𝐿)) |
57 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑖1 |
58 | 40, 37, 57 | nfbr 5121 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝐵‘𝐿) ≤ 1 |
59 | 35, 58 | nfim 1899 |
. . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ≤ 1) |
60 | 45 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑖 = 𝐿 → ((𝐵‘𝑖) ≤ 1 ↔ (𝐵‘𝐿) ≤ 1)) |
61 | 44, 60 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑖 = 𝐿 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) ↔ ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ≤ 1))) |
62 | | fmul01.9 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) |
63 | 59, 61, 62 | vtoclg1f 3504 |
. . . . . . 7
⊢ (𝐿 ∈ (𝐿...𝑀) → ((𝜑 ∧ 𝐿 ∈ (𝐿...𝑀)) → (𝐵‘𝐿) ≤ 1)) |
64 | 31, 32, 63 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (𝐵‘𝐿) ≤ 1) |
65 | 55, 64 | eqbrtrd 5096 |
. . . . 5
⊢ (𝜑 → (𝐴‘𝐿) ≤ 1) |
66 | 56, 65 | jca 512 |
. . . 4
⊢ (𝜑 → (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1)) |
67 | 66 | a1i 11 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → (𝜑 → (0 ≤ (𝐴‘𝐿) ∧ (𝐴‘𝐿) ≤ 1))) |
68 | | elfzouz 13391 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝐿..^𝑀) → 𝑗 ∈ (ℤ≥‘𝐿)) |
69 | 68 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 𝑗 ∈ (ℤ≥‘𝐿)) |
70 | | simpl3 1192 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ 𝑘 ∈ (𝐿...𝑗)) → 𝜑) |
71 | | elfzouz2 13402 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝐿..^𝑀) → 𝑀 ∈ (ℤ≥‘𝑗)) |
72 | | fzss2 13296 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝐿...𝑗) ⊆ (𝐿...𝑀)) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (𝐿..^𝑀) → (𝐿...𝑗) ⊆ (𝐿...𝑀)) |
74 | 73 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐿...𝑗) ⊆ (𝐿...𝑀)) |
75 | 74 | sselda 3921 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ 𝑘 ∈ (𝐿...𝑗)) → 𝑘 ∈ (𝐿...𝑀)) |
76 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑘 ∈ (𝐿...𝑀) |
77 | 33, 76 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) |
78 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖𝑘 |
79 | 38, 78 | nffv 6784 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝐵‘𝑘) |
80 | 79 | nfel1 2923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐵‘𝑘) ∈ ℝ |
81 | 77, 80 | nfim 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) → (𝐵‘𝑘) ∈ ℝ) |
82 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝑘 ∈ (𝐿...𝑀))) |
83 | 82 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)))) |
84 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝐵‘𝑖) = (𝐵‘𝑘)) |
85 | 84 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → ((𝐵‘𝑖) ∈ ℝ ↔ (𝐵‘𝑘) ∈ ℝ)) |
86 | 83, 85 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) → (𝐵‘𝑘) ∈ ℝ))) |
87 | | fmul01.7 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
88 | 81, 86, 87 | chvarfv 2233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐿...𝑀)) → (𝐵‘𝑘) ∈ ℝ) |
89 | 70, 75, 88 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ 𝑘 ∈ (𝐿...𝑗)) → (𝐵‘𝑘) ∈ ℝ) |
90 | | remulcl 10956 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ) → (𝑘 · 𝑙) ∈ ℝ) |
91 | 90 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) ∧ (𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ)) → (𝑘 · 𝑙) ∈ ℝ) |
92 | 69, 89, 91 | seqcl 13743 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘𝑗) ∈ ℝ) |
93 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 𝜑) |
94 | | fzofzp1 13484 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝐿..^𝑀) → (𝑗 + 1) ∈ (𝐿...𝑀)) |
95 | 94 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝑗 + 1) ∈ (𝐿...𝑀)) |
96 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝑗 + 1) ∈ (𝐿...𝑀) |
97 | 33, 96 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) |
98 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖(𝑗 + 1) |
99 | 38, 98 | nffv 6784 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝐵‘(𝑗 + 1)) |
100 | 99 | nfel1 2923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝐵‘(𝑗 + 1)) ∈ ℝ |
101 | 97, 100 | nfim 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
102 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 + 1) → (𝑖 ∈ (𝐿...𝑀) ↔ (𝑗 + 1) ∈ (𝐿...𝑀))) |
103 | 102 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)))) |
104 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 + 1) → (𝐵‘𝑖) = (𝐵‘(𝑗 + 1))) |
105 | 104 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → ((𝐵‘𝑖) ∈ ℝ ↔ (𝐵‘(𝑗 + 1)) ∈ ℝ)) |
106 | 103, 105 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 + 1) → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ))) |
107 | 101, 106,
87 | vtoclg1f 3504 |
. . . . . . . . . 10
⊢ ((𝑗 + 1) ∈ (𝐿...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ)) |
108 | 107 | anabsi7 668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
109 | 93, 95, 108 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
110 | | pm3.35 800 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) |
111 | 110 | ancoms 459 |
. . . . . . . . . . 11
⊢ (((𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) |
112 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((0 ≤
(𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1) → 0 ≤ (𝐴‘𝑗)) |
113 | 111, 112 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐴‘𝑗)) |
114 | 113 | 3adant1 1129 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐴‘𝑗)) |
115 | 51 | fveq1i 6775 |
. . . . . . . . 9
⊢ (𝐴‘𝑗) = (seq𝐿( · , 𝐵)‘𝑗) |
116 | 114, 115 | breqtrdi 5115 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (seq𝐿( · , 𝐵)‘𝑗)) |
117 | | simp1 1135 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 𝑗 ∈ (𝐿..^𝑀)) |
118 | 94 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → (𝑗 + 1) ∈ (𝐿...𝑀)) |
119 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → 𝜑) |
120 | 119, 118 | jca 512 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → (𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀))) |
121 | 36, 37, 99 | nfbr 5121 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖0 ≤
(𝐵‘(𝑗 + 1)) |
122 | 97, 121 | nfim 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1))) |
123 | 104 | breq2d 5086 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → (0 ≤ (𝐵‘𝑖) ↔ 0 ≤ (𝐵‘(𝑗 + 1)))) |
124 | 103, 123 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 + 1) → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1))))) |
125 | 122, 124,
48 | vtoclg1f 3504 |
. . . . . . . . . 10
⊢ ((𝑗 + 1) ∈ (𝐿...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1)))) |
126 | 118, 120,
125 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝐿..^𝑀)) → 0 ≤ (𝐵‘(𝑗 + 1))) |
127 | 93, 117, 126 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐵‘(𝑗 + 1))) |
128 | 92, 109, 116, 127 | mulge0d 11552 |
. . . . . . 7
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1)))) |
129 | | seqp1 13736 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝐿) → (seq𝐿( · , 𝐵)‘(𝑗 + 1)) = ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1)))) |
130 | 69, 129 | syl 17 |
. . . . . . 7
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘(𝑗 + 1)) = ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1)))) |
131 | 128, 130 | breqtrrd 5102 |
. . . . . 6
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (seq𝐿( · , 𝐵)‘(𝑗 + 1))) |
132 | 51 | fveq1i 6775 |
. . . . . 6
⊢ (𝐴‘(𝑗 + 1)) = (seq𝐿( · , 𝐵)‘(𝑗 + 1)) |
133 | 131, 132 | breqtrrdi 5116 |
. . . . 5
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 0 ≤ (𝐴‘(𝑗 + 1))) |
134 | 92, 109 | remulcld 11005 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ∈ ℝ) |
135 | | 1red 10976 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → 1 ∈ ℝ) |
136 | 93, 95 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀))) |
137 | 99, 37, 57 | nfbr 5121 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝐵‘(𝑗 + 1)) ≤ 1 |
138 | 97, 137 | nfim 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ≤ 1) |
139 | 104 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 + 1) → ((𝐵‘𝑖) ≤ 1 ↔ (𝐵‘(𝑗 + 1)) ≤ 1)) |
140 | 103, 139 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 + 1) → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ≤ 1))) |
141 | 138, 140,
62 | vtoclg1f 3504 |
. . . . . . . . . . 11
⊢ ((𝑗 + 1) ∈ (𝐿...𝑀) → ((𝜑 ∧ (𝑗 + 1) ∈ (𝐿...𝑀)) → (𝐵‘(𝑗 + 1)) ≤ 1)) |
142 | 95, 136, 141 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐵‘(𝑗 + 1)) ≤ 1) |
143 | 109, 135,
92, 116, 142 | lemul2ad 11915 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ≤ ((seq𝐿( · , 𝐵)‘𝑗) · 1)) |
144 | 92 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘𝑗) ∈ ℂ) |
145 | 144 | mulid1d 10992 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · 1) = (seq𝐿( · , 𝐵)‘𝑗)) |
146 | 143, 145 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ≤ (seq𝐿( · , 𝐵)‘𝑗)) |
147 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) |
148 | 110 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1))) → (𝐴‘𝑗) ≤ 1) |
149 | 93, 147, 148 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐴‘𝑗) ≤ 1) |
150 | 115, 149 | eqbrtrrid 5110 |
. . . . . . . 8
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘𝑗) ≤ 1) |
151 | 134, 92, 135, 146, 150 | letrd 11132 |
. . . . . . 7
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → ((seq𝐿( · , 𝐵)‘𝑗) · (𝐵‘(𝑗 + 1))) ≤ 1) |
152 | 130, 151 | eqbrtrd 5096 |
. . . . . 6
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (seq𝐿( · , 𝐵)‘(𝑗 + 1)) ≤ 1) |
153 | 132, 152 | eqbrtrid 5109 |
. . . . 5
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (𝐴‘(𝑗 + 1)) ≤ 1) |
154 | 133, 153 | jca 512 |
. . . 4
⊢ ((𝑗 ∈ (𝐿..^𝑀) ∧ (𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) ∧ 𝜑) → (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1)) |
155 | 154 | 3exp 1118 |
. . 3
⊢ (𝑗 ∈ (𝐿..^𝑀) → ((𝜑 → (0 ≤ (𝐴‘𝑗) ∧ (𝐴‘𝑗) ≤ 1)) → (𝜑 → (0 ≤ (𝐴‘(𝑗 + 1)) ∧ (𝐴‘(𝑗 + 1)) ≤ 1)))) |
156 | 6, 11, 16, 21, 67, 155 | fzind2 13505 |
. 2
⊢ (𝐾 ∈ (𝐿...𝑀) → (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1))) |
157 | 1, 156 | mpcom 38 |
1
⊢ (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1)) |