Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem20 Structured version   Visualization version   GIF version

Theorem stoweidlem20 46001
Description: If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem20.1 𝑡𝜑
stoweidlem20.2 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
stoweidlem20.3 (𝜑𝑀 ∈ ℕ)
stoweidlem20.4 (𝜑𝐺:(1...𝑀)⟶𝐴)
stoweidlem20.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem20.6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem20 (𝜑𝐹𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐺   𝐴,𝑓,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑖,𝑀,𝑡
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝐹(𝑡,𝑓,𝑔,𝑖)   𝑀(𝑓,𝑔)

Proof of Theorem stoweidlem20
Dummy variables 𝑦 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem20.2 . 2 𝐹 = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
2 stoweidlem20.3 . . 3 (𝜑𝑀 ∈ ℕ)
32nnred 12143 . . . . 5 (𝜑𝑀 ∈ ℝ)
43leidd 11686 . . . 4 (𝜑𝑀𝑀)
54ancli 548 . . 3 (𝜑 → (𝜑𝑀𝑀))
6 eleq1 2816 . . . . 5 (𝑛 = 𝑀 → (𝑛 ∈ ℕ ↔ 𝑀 ∈ ℕ))
7 breq1 5095 . . . . . . 7 (𝑛 = 𝑀 → (𝑛𝑀𝑀𝑀))
87anbi2d 630 . . . . . 6 (𝑛 = 𝑀 → ((𝜑𝑛𝑀) ↔ (𝜑𝑀𝑀)))
9 oveq2 7357 . . . . . . . . 9 (𝑛 = 𝑀 → (1...𝑛) = (1...𝑀))
109sumeq1d 15607 . . . . . . . 8 (𝑛 = 𝑀 → Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡))
1110mpteq2dv 5186 . . . . . . 7 (𝑛 = 𝑀 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
1211eleq1d 2813 . . . . . 6 (𝑛 = 𝑀 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) ∈ 𝐴))
138, 12imbi12d 344 . . . . 5 (𝑛 = 𝑀 → (((𝜑𝑛𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑𝑀𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) ∈ 𝐴)))
146, 13imbi12d 344 . . . 4 (𝑛 = 𝑀 → ((𝑛 ∈ ℕ → ((𝜑𝑛𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ↔ (𝑀 ∈ ℕ → ((𝜑𝑀𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) ∈ 𝐴))))
15 breq1 5095 . . . . . . 7 (𝑥 = 1 → (𝑥𝑀 ↔ 1 ≤ 𝑀))
1615anbi2d 630 . . . . . 6 (𝑥 = 1 → ((𝜑𝑥𝑀) ↔ (𝜑 ∧ 1 ≤ 𝑀)))
17 oveq2 7357 . . . . . . . . 9 (𝑥 = 1 → (1...𝑥) = (1...1))
1817sumeq1d 15607 . . . . . . . 8 (𝑥 = 1 → Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡))
1918mpteq2dv 5186 . . . . . . 7 (𝑥 = 1 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡)))
2019eleq1d 2813 . . . . . 6 (𝑥 = 1 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡)) ∈ 𝐴))
2116, 20imbi12d 344 . . . . 5 (𝑥 = 1 → (((𝜑𝑥𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 1 ≤ 𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡)) ∈ 𝐴)))
22 breq1 5095 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑀𝑦𝑀))
2322anbi2d 630 . . . . . 6 (𝑥 = 𝑦 → ((𝜑𝑥𝑀) ↔ (𝜑𝑦𝑀)))
24 oveq2 7357 . . . . . . . . 9 (𝑥 = 𝑦 → (1...𝑥) = (1...𝑦))
2524sumeq1d 15607 . . . . . . . 8 (𝑥 = 𝑦 → Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))
2625mpteq2dv 5186 . . . . . . 7 (𝑥 = 𝑦 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)))
2726eleq1d 2813 . . . . . 6 (𝑥 = 𝑦 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴))
2823, 27imbi12d 344 . . . . 5 (𝑥 = 𝑦 → (((𝜑𝑥𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)))
29 breq1 5095 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝑀 ↔ (𝑦 + 1) ≤ 𝑀))
3029anbi2d 630 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝜑𝑥𝑀) ↔ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)))
31 oveq2 7357 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (1...𝑥) = (1...(𝑦 + 1)))
3231sumeq1d 15607 . . . . . . . 8 (𝑥 = (𝑦 + 1) → Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡))
3332mpteq2dv 5186 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)))
3433eleq1d 2813 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)) ∈ 𝐴))
3530, 34imbi12d 344 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝜑𝑥𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)) ∈ 𝐴)))
36 breq1 5095 . . . . . . 7 (𝑥 = 𝑛 → (𝑥𝑀𝑛𝑀))
3736anbi2d 630 . . . . . 6 (𝑥 = 𝑛 → ((𝜑𝑥𝑀) ↔ (𝜑𝑛𝑀)))
38 oveq2 7357 . . . . . . . . 9 (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛))
3938sumeq1d 15607 . . . . . . . 8 (𝑥 = 𝑛 → Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡))
4039mpteq2dv 5186 . . . . . . 7 (𝑥 = 𝑛 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)))
4140eleq1d 2813 . . . . . 6 (𝑥 = 𝑛 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)) ∈ 𝐴))
4237, 41imbi12d 344 . . . . 5 (𝑥 = 𝑛 → (((𝜑𝑥𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑𝑛𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)) ∈ 𝐴)))
43 stoweidlem20.1 . . . . . . . . 9 𝑡𝜑
44 1z 12505 . . . . . . . . . 10 1 ∈ ℤ
45 stoweidlem20.4 . . . . . . . . . . . . . 14 (𝜑𝐺:(1...𝑀)⟶𝐴)
46 nnuz 12778 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
472, 46eleqtrdi 2838 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (ℤ‘1))
48 eluzfz1 13434 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
4947, 48syl 17 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ (1...𝑀))
5045, 49ffvelcdmd 7019 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘1) ∈ 𝐴)
5150ancli 548 . . . . . . . . . . . . 13 (𝜑 → (𝜑 ∧ (𝐺‘1) ∈ 𝐴))
52 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐺‘1) → (𝑓𝐴 ↔ (𝐺‘1) ∈ 𝐴))
5352anbi2d 630 . . . . . . . . . . . . . . 15 (𝑓 = (𝐺‘1) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺‘1) ∈ 𝐴)))
54 feq1 6630 . . . . . . . . . . . . . . 15 (𝑓 = (𝐺‘1) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘1):𝑇⟶ℝ))
5553, 54imbi12d 344 . . . . . . . . . . . . . 14 (𝑓 = (𝐺‘1) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘1) ∈ 𝐴) → (𝐺‘1):𝑇⟶ℝ)))
56 stoweidlem20.6 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5755, 56vtoclg 3509 . . . . . . . . . . . . 13 ((𝐺‘1) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘1) ∈ 𝐴) → (𝐺‘1):𝑇⟶ℝ))
5850, 51, 57sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐺‘1):𝑇⟶ℝ)
5958ffvelcdmda 7018 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ((𝐺‘1)‘𝑡) ∈ ℝ)
6059recnd 11143 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺‘1)‘𝑡) ∈ ℂ)
61 fveq2 6822 . . . . . . . . . . . 12 (𝑖 = 1 → (𝐺𝑖) = (𝐺‘1))
6261fveq1d 6824 . . . . . . . . . . 11 (𝑖 = 1 → ((𝐺𝑖)‘𝑡) = ((𝐺‘1)‘𝑡))
6362fsum1 15654 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝐺‘1)‘𝑡) ∈ ℂ) → Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡) = ((𝐺‘1)‘𝑡))
6444, 60, 63sylancr 587 . . . . . . . . 9 ((𝜑𝑡𝑇) → Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡) = ((𝐺‘1)‘𝑡))
6543, 64mpteq2da 5184 . . . . . . . 8 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ ((𝐺‘1)‘𝑡)))
6658feqmptd 6891 . . . . . . . 8 (𝜑 → (𝐺‘1) = (𝑡𝑇 ↦ ((𝐺‘1)‘𝑡)))
6765, 66eqtr4d 2767 . . . . . . 7 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡)) = (𝐺‘1))
6867, 50eqeltrd 2828 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡)) ∈ 𝐴)
6968adantr 480 . . . . 5 ((𝜑 ∧ 1 ≤ 𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺𝑖)‘𝑡)) ∈ 𝐴)
70 simprl 770 . . . . . . 7 (((𝑦 ∈ ℕ ∧ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → 𝜑)
71 simpll 766 . . . . . . 7 (((𝑦 ∈ ℕ ∧ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → 𝑦 ∈ ℕ)
72 simprr 772 . . . . . . 7 (((𝑦 ∈ ℕ ∧ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑦 + 1) ≤ 𝑀)
73 simp1 1136 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝜑)
74 nnre 12135 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
75743ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ∈ ℝ)
76 1red 11116 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ∈ ℝ)
7775, 76readdcld 11144 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ ℝ)
7823ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℕ)
7978nnred 12143 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℝ)
8075lep1d 12056 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ≤ (𝑦 + 1))
81 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ≤ 𝑀)
8275, 77, 79, 80, 81letrd 11273 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦𝑀)
8373, 82jca 511 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝜑𝑦𝑀))
8470, 71, 72, 83syl3anc 1373 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝜑𝑦𝑀))
85 simplr 768 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴))
8684, 85mpd 15 . . . . . . 7 (((𝑦 ∈ ℕ ∧ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)
87 nfv 1914 . . . . . . . . . . 11 𝑡 𝑦 ∈ ℕ
88 nfv 1914 . . . . . . . . . . 11 𝑡(𝑦 + 1) ≤ 𝑀
8943, 87, 88nf3an 1901 . . . . . . . . . 10 𝑡(𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀)
90 simpl2 1193 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → 𝑦 ∈ ℕ)
9190, 46eleqtrdi 2838 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → 𝑦 ∈ (ℤ‘1))
92 simpll1 1213 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝜑)
93 1zzd 12506 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 1 ∈ ℤ)
942nnzd 12498 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
95943ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℤ)
9695ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑀 ∈ ℤ)
97 elfzelz 13427 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ∈ ℤ)
9897adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ ℤ)
99 elfzle1 13430 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...(𝑦 + 1)) → 1 ≤ 𝑖)
10099adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 1 ≤ 𝑖)
10197zred 12580 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ∈ ℝ)
102101adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ ℝ)
10377ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → (𝑦 + 1) ∈ ℝ)
10479ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑀 ∈ ℝ)
105 elfzle2 13431 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ≤ (𝑦 + 1))
106105adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ≤ (𝑦 + 1))
107 simpll3 1215 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → (𝑦 + 1) ≤ 𝑀)
108102, 103, 104, 106, 107letrd 11273 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖𝑀)
10993, 96, 98, 100, 108elfzd 13418 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ (1...𝑀))
110 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑡𝑇)
11145ffvelcdmda 7018 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝐴)
1121113adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡𝑇) → (𝐺𝑖) ∈ 𝐴)
113 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡𝑇) → 𝜑)
114113, 112jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡𝑇) → (𝜑 ∧ (𝐺𝑖) ∈ 𝐴))
115 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝐺𝑖) → (𝑓𝐴 ↔ (𝐺𝑖) ∈ 𝐴))
116115anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝐺𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺𝑖) ∈ 𝐴)))
117 feq1 6630 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝐺𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺𝑖):𝑇⟶ℝ))
118116, 117imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐺𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ)))
119118, 56vtoclg 3509 . . . . . . . . . . . . . . . 16 ((𝐺𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺𝑖) ∈ 𝐴) → (𝐺𝑖):𝑇⟶ℝ))
120112, 114, 119sylc 65 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡𝑇) → (𝐺𝑖):𝑇⟶ℝ)
121 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡𝑇) → 𝑡𝑇)
122120, 121ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡𝑇) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
123122recnd 11143 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡𝑇) → ((𝐺𝑖)‘𝑡) ∈ ℂ)
12492, 109, 110, 123syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → ((𝐺𝑖)‘𝑡) ∈ ℂ)
125 fveq2 6822 . . . . . . . . . . . . 13 (𝑖 = (𝑦 + 1) → (𝐺𝑖) = (𝐺‘(𝑦 + 1)))
126125fveq1d 6824 . . . . . . . . . . . 12 (𝑖 = (𝑦 + 1) → ((𝐺𝑖)‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡))
12791, 124, 126fsump1 15663 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡) = (Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))
128 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → 𝑡𝑇)
129 fzfid 13880 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → (1...𝑦) ∈ Fin)
130 simpll1 1213 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝜑)
131 1zzd 12506 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 1 ∈ ℤ)
13295ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑀 ∈ ℤ)
133 elfzelz 13427 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑦) → 𝑖 ∈ ℤ)
134133adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ ℤ)
135 elfzle1 13430 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑦) → 1 ≤ 𝑖)
136135adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 1 ≤ 𝑖)
137133zred 12580 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...𝑦) → 𝑖 ∈ ℝ)
138137adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ ℝ)
13977adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → (𝑦 + 1) ∈ ℝ)
14079adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑀 ∈ ℝ)
14175adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑦 ∈ ℝ)
142 elfzle2 13431 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1...𝑦) → 𝑖𝑦)
143142adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖𝑦)
144 letrp1 11968 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑖𝑦) → 𝑖 ≤ (𝑦 + 1))
145138, 141, 143, 144syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ (𝑦 + 1))
146 simpl3 1194 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → (𝑦 + 1) ≤ 𝑀)
147138, 139, 140, 145, 146letrd 11273 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖𝑀)
148147adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖𝑀)
149131, 132, 134, 136, 148elfzd 13418 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ (1...𝑀))
150 simplr 768 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑡𝑇)
151130, 149, 150, 122syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (1...𝑦)) → ((𝐺𝑖)‘𝑡) ∈ ℝ)
152129, 151fsumrecl 15641 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡) ∈ ℝ)
153 eqid 2729 . . . . . . . . . . . . . 14 (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))
154153fvmpt2 6941 . . . . . . . . . . . . 13 ((𝑡𝑇 ∧ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡) ∈ ℝ) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))
155128, 152, 154syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))
156155oveq1d 7364 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)) = (Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))
157127, 156eqtr4d 2767 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))
15889, 157mpteq2da 5184 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))))
159158adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))))
160 1zzd 12506 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ∈ ℤ)
161 peano2nn 12140 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
162161nnzd 12498 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
1631623ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ ℤ)
164161nnge1d 12176 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → 1 ≤ (𝑦 + 1))
1651643ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ≤ (𝑦 + 1))
166160, 95, 163, 165, 81elfzd 13418 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ (1...𝑀))
16745ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝐺‘(𝑦 + 1)) ∈ 𝐴)
16873, 166, 167syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝐺‘(𝑦 + 1)) ∈ 𝐴)
169 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝐺‘(𝑦 + 1)) → (𝑓𝐴 ↔ (𝐺‘(𝑦 + 1)) ∈ 𝐴))
170169anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝐺‘(𝑦 + 1)) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴)))
171 feq1 6630 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝐺‘(𝑦 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘(𝑦 + 1)):𝑇⟶ℝ))
172170, 171imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝐺‘(𝑦 + 1)) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ)))
173172, 56vtoclg 3509 . . . . . . . . . . . . . . . 16 ((𝐺‘(𝑦 + 1)) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ))
174173anabsi7 671 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ)
17573, 168, 174syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ)
176175ffvelcdmda 7018 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → ((𝐺‘(𝑦 + 1))‘𝑡) ∈ ℝ)
177 eqid 2729 . . . . . . . . . . . . . 14 (𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) = (𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))
178177fvmpt2 6941 . . . . . . . . . . . . 13 ((𝑡𝑇 ∧ ((𝐺‘(𝑦 + 1))‘𝑡) ∈ ℝ) → ((𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡))
179128, 176, 178syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡))
180179oveq2d 7365 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡𝑇) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))
18189, 180mpteq2da 5184 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))))
182181adantr 480 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))))
183 simpl1 1192 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → 𝜑)
184 simpr 484 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)
185166adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑦 + 1) ∈ (1...𝑀))
186174feqmptd 6891 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)) = (𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)))
187167, 186syldan 591 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝐺‘(𝑦 + 1)) = (𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)))
188187, 167eqeltrrd 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴)
189183, 185, 188syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴)
190 stoweidlem20.5 . . . . . . . . . . 11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
191 nfmpt1 5191 . . . . . . . . . . 11 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))
192 nfmpt1 5191 . . . . . . . . . . 11 𝑡(𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))
193190, 191, 192stoweidlem8 45989 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴 ∧ (𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) ∈ 𝐴)
194183, 184, 189, 193syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝑡𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) ∈ 𝐴)
195182, 194eqeltrrd 2829 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) ∈ 𝐴)
196159, 195eqeltrd 2828 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)) ∈ 𝐴)
19770, 71, 72, 86, 196syl31anc 1375 . . . . . 6 (((𝑦 ∈ ℕ ∧ ((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)) ∈ 𝐴)
198197exp31 419 . . . . 5 (𝑦 ∈ ℕ → (((𝜑𝑦𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺𝑖)‘𝑡)) ∈ 𝐴) → ((𝜑 ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺𝑖)‘𝑡)) ∈ 𝐴)))
19921, 28, 35, 42, 69, 198nnind 12146 . . . 4 (𝑛 ∈ ℕ → ((𝜑𝑛𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺𝑖)‘𝑡)) ∈ 𝐴))
20014, 199vtoclg 3509 . . 3 (𝑀 ∈ ℕ → (𝑀 ∈ ℕ → ((𝜑𝑀𝑀) → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) ∈ 𝐴)))
2012, 2, 5, 200syl3c 66 . 2 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) ∈ 𝐴)
2021, 201eqeltrid 2832 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  1c1 11010   + caddc 11012  cle 11150  cn 12128  cz 12471  cuz 12735  ...cfz 13410  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  stoweidlem32  46013
  Copyright terms: Public domain W3C validator