| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem20.2 |
. 2
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) |
| 2 | | stoweidlem20.3 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | 2 | nnred 12281 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 4 | 3 | leidd 11829 |
. . . 4
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
| 5 | 4 | ancli 548 |
. . 3
⊢ (𝜑 → (𝜑 ∧ 𝑀 ≤ 𝑀)) |
| 6 | | eleq1 2829 |
. . . . 5
⊢ (𝑛 = 𝑀 → (𝑛 ∈ ℕ ↔ 𝑀 ∈ ℕ)) |
| 7 | | breq1 5146 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (𝑛 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀)) |
| 8 | 7 | anbi2d 630 |
. . . . . 6
⊢ (𝑛 = 𝑀 → ((𝜑 ∧ 𝑛 ≤ 𝑀) ↔ (𝜑 ∧ 𝑀 ≤ 𝑀))) |
| 9 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (1...𝑛) = (1...𝑀)) |
| 10 | 9 | sumeq1d 15736 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) |
| 11 | 10 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) |
| 12 | 11 | eleq1d 2826 |
. . . . . 6
⊢ (𝑛 = 𝑀 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 13 | 8, 12 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = 𝑀 → (((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑀 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 14 | 6, 13 | imbi12d 344 |
. . . 4
⊢ (𝑛 = 𝑀 → ((𝑛 ∈ ℕ → ((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ↔ (𝑀 ∈ ℕ → ((𝜑 ∧ 𝑀 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)))) |
| 15 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑥 ≤ 𝑀 ↔ 1 ≤ 𝑀)) |
| 16 | 15 | anbi2d 630 |
. . . . . 6
⊢ (𝑥 = 1 → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ 1 ≤ 𝑀))) |
| 17 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (1...𝑥) = (1...1)) |
| 18 | 17 | sumeq1d 15736 |
. . . . . . . 8
⊢ (𝑥 = 1 → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) |
| 19 | 18 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡))) |
| 20 | 19 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = 1 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 21 | 16, 20 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 1 → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 1 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 22 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝑀 ↔ 𝑦 ≤ 𝑀)) |
| 23 | 22 | anbi2d 630 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ 𝑦 ≤ 𝑀))) |
| 24 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (1...𝑥) = (1...𝑦)) |
| 25 | 24 | sumeq1d 15736 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 26 | 25 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))) |
| 27 | 26 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 28 | 23, 27 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 29 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ≤ 𝑀 ↔ (𝑦 + 1) ≤ 𝑀)) |
| 30 | 29 | anbi2d 630 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀))) |
| 31 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → (1...𝑥) = (1...(𝑦 + 1))) |
| 32 | 31 | sumeq1d 15736 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) |
| 33 | 32 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡))) |
| 34 | 33 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 35 | 30, 34 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 36 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑥 ≤ 𝑀 ↔ 𝑛 ≤ 𝑀)) |
| 37 | 36 | anbi2d 630 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝜑 ∧ 𝑥 ≤ 𝑀) ↔ (𝜑 ∧ 𝑛 ≤ 𝑀))) |
| 38 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛)) |
| 39 | 38 | sumeq1d 15736 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) |
| 40 | 39 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡))) |
| 41 | 40 | eleq1d 2826 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 42 | 37, 41 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑛 → (((𝜑 ∧ 𝑥 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑥)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 43 | | stoweidlem20.1 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝜑 |
| 44 | | 1z 12647 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 45 | | stoweidlem20.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝐴) |
| 46 | | nnuz 12921 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
| 47 | 2, 46 | eleqtrdi 2851 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 48 | | eluzfz1 13571 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑀)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ (1...𝑀)) |
| 50 | 45, 49 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘1) ∈ 𝐴) |
| 51 | 50 | ancli 548 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝜑 ∧ (𝐺‘1) ∈ 𝐴)) |
| 52 | | eleq1 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝐺‘1) → (𝑓 ∈ 𝐴 ↔ (𝐺‘1) ∈ 𝐴)) |
| 53 | 52 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐺‘1) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘1) ∈ 𝐴))) |
| 54 | | feq1 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐺‘1) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘1):𝑇⟶ℝ)) |
| 55 | 53, 54 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝐺‘1) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘1) ∈ 𝐴) → (𝐺‘1):𝑇⟶ℝ))) |
| 56 | | stoweidlem20.6 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
| 57 | 55, 56 | vtoclg 3554 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘1) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘1) ∈ 𝐴) → (𝐺‘1):𝑇⟶ℝ)) |
| 58 | 50, 51, 57 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘1):𝑇⟶ℝ) |
| 59 | 58 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘1)‘𝑡) ∈ ℝ) |
| 60 | 59 | recnd 11289 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐺‘1)‘𝑡) ∈ ℂ) |
| 61 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑖 = 1 → (𝐺‘𝑖) = (𝐺‘1)) |
| 62 | 61 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘1)‘𝑡)) |
| 63 | 62 | fsum1 15783 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ ((𝐺‘1)‘𝑡) ∈ ℂ) → Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡) = ((𝐺‘1)‘𝑡)) |
| 64 | 44, 60, 63 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡) = ((𝐺‘1)‘𝑡)) |
| 65 | 43, 64 | mpteq2da 5240 |
. . . . . . . 8
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘1)‘𝑡))) |
| 66 | 58 | feqmptd 6977 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘1)‘𝑡))) |
| 67 | 65, 66 | eqtr4d 2780 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) = (𝐺‘1)) |
| 68 | 67, 50 | eqeltrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 69 | 68 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 1 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...1)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 70 | | simprl 771 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → 𝜑) |
| 71 | | simpll 767 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → 𝑦 ∈ ℕ) |
| 72 | | simprr 773 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑦 + 1) ≤ 𝑀) |
| 73 | | simp1 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝜑) |
| 74 | | nnre 12273 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
| 75 | 74 | 3ad2ant2 1135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ∈ ℝ) |
| 76 | | 1red 11262 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ∈ ℝ) |
| 77 | 75, 76 | readdcld 11290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ ℝ) |
| 78 | 2 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℕ) |
| 79 | 78 | nnred 12281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℝ) |
| 80 | 75 | lep1d 12199 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ≤ (𝑦 + 1)) |
| 81 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ≤ 𝑀) |
| 82 | 75, 77, 79, 80, 81 | letrd 11418 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑦 ≤ 𝑀) |
| 83 | 73, 82 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝜑 ∧ 𝑦 ≤ 𝑀)) |
| 84 | 70, 71, 72, 83 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝜑 ∧ 𝑦 ≤ 𝑀)) |
| 85 | | simplr 769 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 86 | 84, 85 | mpd 15 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 87 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡 𝑦 ∈ ℕ |
| 88 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑦 + 1) ≤ 𝑀 |
| 89 | 43, 87, 88 | nf3an 1901 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) |
| 90 | | simpl2 1193 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑦 ∈ ℕ) |
| 91 | 90, 46 | eleqtrdi 2851 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑦 ∈
(ℤ≥‘1)) |
| 92 | | simpll1 1213 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝜑) |
| 93 | | 1zzd 12648 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 1 ∈
ℤ) |
| 94 | 2 | nnzd 12640 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 95 | 94 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 𝑀 ∈ ℤ) |
| 96 | 95 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑀 ∈ ℤ) |
| 97 | | elfzelz 13564 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ∈ ℤ) |
| 98 | 97 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ ℤ) |
| 99 | | elfzle1 13567 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 1 ≤ 𝑖) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 1 ≤ 𝑖) |
| 101 | 97 | zred 12722 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ∈ ℝ) |
| 102 | 101 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ ℝ) |
| 103 | 77 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → (𝑦 + 1) ∈ ℝ) |
| 104 | 79 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑀 ∈ ℝ) |
| 105 | | elfzle2 13568 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...(𝑦 + 1)) → 𝑖 ≤ (𝑦 + 1)) |
| 106 | 105 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ≤ (𝑦 + 1)) |
| 107 | | simpll3 1215 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → (𝑦 + 1) ≤ 𝑀) |
| 108 | 102, 103,
104, 106, 107 | letrd 11418 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ≤ 𝑀) |
| 109 | 93, 96, 98, 100, 108 | elfzd 13555 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑖 ∈ (1...𝑀)) |
| 110 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → 𝑡 ∈ 𝑇) |
| 111 | 45 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘𝑖) ∈ 𝐴) |
| 112 | 111 | 3adant3 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑖) ∈ 𝐴) |
| 113 | | simp1 1137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → 𝜑) |
| 114 | 113, 112 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → (𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴)) |
| 115 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝐺‘𝑖) → (𝑓 ∈ 𝐴 ↔ (𝐺‘𝑖) ∈ 𝐴)) |
| 116 | 115 | anbi2d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘𝑖) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴))) |
| 117 | | feq1 6716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘𝑖):𝑇⟶ℝ)) |
| 118 | 116, 117 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝐺‘𝑖) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴) → (𝐺‘𝑖):𝑇⟶ℝ))) |
| 119 | 118, 56 | vtoclg 3554 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘𝑖) ∈ 𝐴) → (𝐺‘𝑖):𝑇⟶ℝ)) |
| 120 | 112, 114,
119 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → (𝐺‘𝑖):𝑇⟶ℝ) |
| 121 | | simp3 1139 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
| 122 | 120, 121 | ffvelcdmd 7105 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑡) ∈ ℝ) |
| 123 | 122 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝐺‘𝑖)‘𝑡) ∈ ℂ) |
| 124 | 92, 109, 110, 123 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...(𝑦 + 1))) → ((𝐺‘𝑖)‘𝑡) ∈ ℂ) |
| 125 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑦 + 1) → (𝐺‘𝑖) = (𝐺‘(𝑦 + 1))) |
| 126 | 125 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑦 + 1) → ((𝐺‘𝑖)‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 127 | 91, 124, 126 | fsump1 15792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡) = (Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 128 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
| 129 | | fzfid 14014 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → (1...𝑦) ∈ Fin) |
| 130 | | simpll1 1213 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝜑) |
| 131 | | 1zzd 12648 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 1 ∈ ℤ) |
| 132 | 95 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑀 ∈ ℤ) |
| 133 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑦) → 𝑖 ∈ ℤ) |
| 134 | 133 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ ℤ) |
| 135 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑦) → 1 ≤ 𝑖) |
| 136 | 135 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 1 ≤ 𝑖) |
| 137 | 133 | zred 12722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑦) → 𝑖 ∈ ℝ) |
| 138 | 137 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ ℝ) |
| 139 | 77 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → (𝑦 + 1) ∈ ℝ) |
| 140 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑀 ∈ ℝ) |
| 141 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑦 ∈ ℝ) |
| 142 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑦) → 𝑖 ≤ 𝑦) |
| 143 | 142 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ 𝑦) |
| 144 | | letrp1 12111 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑖 ≤ 𝑦) → 𝑖 ≤ (𝑦 + 1)) |
| 145 | 138, 141,
143, 144 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ (𝑦 + 1)) |
| 146 | | simpl3 1194 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → (𝑦 + 1) ≤ 𝑀) |
| 147 | 138, 139,
140, 145, 146 | letrd 11418 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ 𝑀) |
| 148 | 147 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ≤ 𝑀) |
| 149 | 131, 132,
134, 136, 148 | elfzd 13555 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑖 ∈ (1...𝑀)) |
| 150 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → 𝑡 ∈ 𝑇) |
| 151 | 130, 149,
150, 122 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑦)) → ((𝐺‘𝑖)‘𝑡) ∈ ℝ) |
| 152 | 129, 151 | fsumrecl 15770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) ∈ ℝ) |
| 153 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 154 | 153 | fvmpt2 7027 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ 𝑇 ∧ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 155 | 128, 152,
154 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) = Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 156 | 155 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)) = (Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 157 | 127, 156 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 158 | 89, 157 | mpteq2da 5240 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 159 | 158 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 160 | | 1zzd 12648 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ∈ ℤ) |
| 161 | | peano2nn 12278 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℕ) |
| 162 | 161 | nnzd 12640 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℤ) |
| 163 | 162 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ ℤ) |
| 164 | 161 | nnge1d 12314 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ → 1 ≤
(𝑦 + 1)) |
| 165 | 164 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → 1 ≤ (𝑦 + 1)) |
| 166 | 160, 95, 163, 165, 81 | elfzd 13555 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑦 + 1) ∈ (1...𝑀)) |
| 167 | 45 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝐺‘(𝑦 + 1)) ∈ 𝐴) |
| 168 | 73, 166, 167 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝐺‘(𝑦 + 1)) ∈ 𝐴) |
| 169 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → (𝑓 ∈ 𝐴 ↔ (𝐺‘(𝑦 + 1)) ∈ 𝐴)) |
| 170 | 169 | anbi2d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → ((𝜑 ∧ 𝑓 ∈ 𝐴) ↔ (𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴))) |
| 171 | | feq1 6716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝐺‘(𝑦 + 1)):𝑇⟶ℝ)) |
| 172 | 170, 171 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝐺‘(𝑦 + 1)) → (((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ))) |
| 173 | 172, 56 | vtoclg 3554 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘(𝑦 + 1)) ∈ 𝐴 → ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ)) |
| 174 | 173 | anabsi7 671 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ) |
| 175 | 73, 168, 174 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝐺‘(𝑦 + 1)):𝑇⟶ℝ) |
| 176 | 175 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝐺‘(𝑦 + 1))‘𝑡) ∈ ℝ) |
| 177 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 178 | 177 | fvmpt2 7027 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ 𝑇 ∧ ((𝐺‘(𝑦 + 1))‘𝑡) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 179 | 128, 176,
178 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡) = ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 180 | 179 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ 𝑡 ∈ 𝑇) → (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 181 | 89, 180 | mpteq2da 5240 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 182 | 181 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡)))) |
| 183 | | simpl1 1192 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → 𝜑) |
| 184 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 185 | 166 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑦 + 1) ∈ (1...𝑀)) |
| 186 | 174 | feqmptd 6977 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘(𝑦 + 1)) ∈ 𝐴) → (𝐺‘(𝑦 + 1)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 187 | 167, 186 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝐺‘(𝑦 + 1)) = (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))) |
| 188 | 187, 167 | eqeltrrd 2842 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 + 1) ∈ (1...𝑀)) → (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴) |
| 189 | 183, 185,
188 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴) |
| 190 | | stoweidlem20.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| 191 | | nfmpt1 5250 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) |
| 192 | | nfmpt1 5250 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) |
| 193 | 190, 191,
192 | stoweidlem8 46023 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴 ∧ (𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) ∈ 𝐴) |
| 194 | 183, 184,
189, 193 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ ((𝐺‘(𝑦 + 1))‘𝑡))‘𝑡))) ∈ 𝐴) |
| 195 | 182, 194 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡))‘𝑡) + ((𝐺‘(𝑦 + 1))‘𝑡))) ∈ 𝐴) |
| 196 | 159, 195 | eqeltrd 2841 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ (𝑦 + 1) ≤ 𝑀) ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 197 | 70, 71, 72, 86, 196 | syl31anc 1375 |
. . . . . 6
⊢ (((𝑦 ∈ ℕ ∧ ((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) ∧ (𝜑 ∧ (𝑦 + 1) ≤ 𝑀)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 198 | 197 | exp31 419 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (((𝜑 ∧ 𝑦 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑦)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) → ((𝜑 ∧ (𝑦 + 1) ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...(𝑦 + 1))((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 199 | 21, 28, 35, 42, 69, 198 | nnind 12284 |
. . . 4
⊢ (𝑛 ∈ ℕ → ((𝜑 ∧ 𝑛 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑛)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴)) |
| 200 | 14, 199 | vtoclg 3554 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑀 ∈ ℕ → ((𝜑 ∧ 𝑀 ≤ 𝑀) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴))) |
| 201 | 2, 2, 5, 200 | syl3c 66 |
. 2
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) ∈ 𝐴) |
| 202 | 1, 201 | eqeltrid 2845 |
1
⊢ (𝜑 → 𝐹 ∈ 𝐴) |