Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagmhm Structured version   Visualization version   GIF version

Theorem pwsdiagmhm 17978
 Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsdiagmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagmhm.b 𝐵 = (Base‘𝑅)
pwsdiagmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑅 ∈ Mnd)
2 pwsdiagmhm.y . . 3 𝑌 = (𝑅s 𝐼)
32pwsmnd 17934 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑌 ∈ Mnd)
4 pwsdiagmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
54fvexi 6681 . . . . . 6 𝐵 ∈ V
6 pwsdiagmhm.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
76fdiagfn 8443 . . . . . 6 ((𝐵 ∈ V ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
85, 7mpan 686 . . . . 5 (𝐼𝑊𝐹:𝐵⟶(𝐵m 𝐼))
98adantl 482 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
102, 4pwsbas 16750 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))
1110feq3d 6498 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(𝐵m 𝐼) ↔ 𝐹:𝐵⟶(Base‘𝑌)))
129, 11mpbid 233 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(Base‘𝑌))
13 simplr 765 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑊)
14 eqid 2826 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
154, 14mndcl 17907 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
16153expb 1114 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1716adantlr 711 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
186fvdiagfn 8444 . . . . . 6 ((𝐼𝑊 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
1913, 17, 18syl2anc 584 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
206fvdiagfn 8444 . . . . . . . . 9 ((𝐼𝑊𝑎𝐵) → (𝐹𝑎) = (𝐼 × {𝑎}))
216fvdiagfn 8444 . . . . . . . . 9 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2220, 21oveqan12d 7167 . . . . . . . 8 (((𝐼𝑊𝑎𝐵) ∧ (𝐼𝑊𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2322anandis 674 . . . . . . 7 ((𝐼𝑊 ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2423adantll 710 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
25 eqid 2826 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
26 simpll 763 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Mnd)
272, 4, 25pwsdiagel 16760 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑎𝐵) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
2827adantrr 713 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
292, 4, 25pwsdiagel 16760 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
3029adantrl 712 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
31 eqid 2826 . . . . . . 7 (+g𝑌) = (+g𝑌)
322, 25, 26, 13, 28, 30, 14, 31pwsplusgval 16753 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f (+g𝑅)(𝐼 × {𝑏})))
33 id 22 . . . . . . . 8 (𝐼𝑊𝐼𝑊)
34 vex 3503 . . . . . . . . 9 𝑎 ∈ V
3534a1i 11 . . . . . . . 8 (𝐼𝑊𝑎 ∈ V)
36 vex 3503 . . . . . . . . 9 𝑏 ∈ V
3736a1i 11 . . . . . . . 8 (𝐼𝑊𝑏 ∈ V)
3833, 35, 37ofc12 7424 . . . . . . 7 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘f (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
3938ad2antlr 723 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎}) ∘f (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4024, 32, 393eqtrd 2865 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4119, 40eqtr4d 2864 . . . 4 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
4241ralrimivva 3196 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
43 simpr 485 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐼𝑊)
44 eqid 2826 . . . . . . 7 (0g𝑅) = (0g𝑅)
454, 44mndidcl 17914 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
4645adantr 481 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (0g𝑅) ∈ 𝐵)
476fvdiagfn 8444 . . . . 5 ((𝐼𝑊 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
4843, 46, 47syl2anc 584 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
492, 44pws0g 17935 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × {(0g𝑅)}) = (0g𝑌))
5048, 49eqtrd 2861 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (0g𝑌))
5112, 42, 503jca 1122 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌)))
52 eqid 2826 . . 3 (0g𝑌) = (0g𝑌)
534, 25, 14, 31, 44, 52ismhm 17946 . 2 (𝐹 ∈ (𝑅 MndHom 𝑌) ↔ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌))))
541, 3, 51, 53syl21anbrc 1338 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∀wral 3143  Vcvv 3500  {csn 4564   ↦ cmpt 5143   × cxp 5552  ⟶wf 6348  ‘cfv 6352  (class class class)co 7148   ∘f cof 7397   ↑m cmap 8396  Basecbs 16473  +gcplusg 16555  0gc0g 16703   ↑s cpws 16710  Mndcmnd 17900   MndHom cmhm 17942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-hom 16579  df-cco 16580  df-0g 16705  df-prds 16711  df-pws 16713  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-mhm 17944 This theorem is referenced by:  pwsdiagghm  18316  pwsdiagrhm  19489
 Copyright terms: Public domain W3C validator