MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagmhm Structured version   Visualization version   GIF version

Theorem pwsdiagmhm 18857
Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsdiagmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagmhm.b 𝐵 = (Base‘𝑅)
pwsdiagmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑅 ∈ Mnd)
2 pwsdiagmhm.y . . 3 𝑌 = (𝑅s 𝐼)
32pwsmnd 18798 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑌 ∈ Mnd)
4 pwsdiagmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
54fvexi 6921 . . . . . 6 𝐵 ∈ V
6 pwsdiagmhm.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
76fdiagfn 8929 . . . . . 6 ((𝐵 ∈ V ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
85, 7mpan 690 . . . . 5 (𝐼𝑊𝐹:𝐵⟶(𝐵m 𝐼))
98adantl 481 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
102, 4pwsbas 17534 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))
1110feq3d 6724 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(𝐵m 𝐼) ↔ 𝐹:𝐵⟶(Base‘𝑌)))
129, 11mpbid 232 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(Base‘𝑌))
13 simplr 769 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑊)
14 eqid 2735 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
154, 14mndcl 18768 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
16153expb 1119 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1716adantlr 715 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
186fvdiagfn 8930 . . . . . 6 ((𝐼𝑊 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
1913, 17, 18syl2anc 584 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
206fvdiagfn 8930 . . . . . . . . 9 ((𝐼𝑊𝑎𝐵) → (𝐹𝑎) = (𝐼 × {𝑎}))
216fvdiagfn 8930 . . . . . . . . 9 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2220, 21oveqan12d 7450 . . . . . . . 8 (((𝐼𝑊𝑎𝐵) ∧ (𝐼𝑊𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2322anandis 678 . . . . . . 7 ((𝐼𝑊 ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2423adantll 714 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
25 eqid 2735 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
26 simpll 767 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Mnd)
272, 4, 25pwsdiagel 17544 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑎𝐵) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
2827adantrr 717 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
292, 4, 25pwsdiagel 17544 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
3029adantrl 716 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
31 eqid 2735 . . . . . . 7 (+g𝑌) = (+g𝑌)
322, 25, 26, 13, 28, 30, 14, 31pwsplusgval 17537 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f (+g𝑅)(𝐼 × {𝑏})))
33 id 22 . . . . . . . 8 (𝐼𝑊𝐼𝑊)
34 vex 3482 . . . . . . . . 9 𝑎 ∈ V
3534a1i 11 . . . . . . . 8 (𝐼𝑊𝑎 ∈ V)
36 vex 3482 . . . . . . . . 9 𝑏 ∈ V
3736a1i 11 . . . . . . . 8 (𝐼𝑊𝑏 ∈ V)
3833, 35, 37ofc12 7727 . . . . . . 7 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘f (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
3938ad2antlr 727 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎}) ∘f (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4024, 32, 393eqtrd 2779 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4119, 40eqtr4d 2778 . . . 4 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
4241ralrimivva 3200 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
43 simpr 484 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐼𝑊)
44 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
454, 44mndidcl 18775 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
4645adantr 480 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (0g𝑅) ∈ 𝐵)
476fvdiagfn 8930 . . . . 5 ((𝐼𝑊 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
4843, 46, 47syl2anc 584 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
492, 44pws0g 18799 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × {(0g𝑅)}) = (0g𝑌))
5048, 49eqtrd 2775 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (0g𝑌))
5112, 42, 503jca 1127 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌)))
52 eqid 2735 . . 3 (0g𝑌) = (0g𝑌)
534, 25, 14, 31, 44, 52ismhm 18811 . 2 (𝐹 ∈ (𝑅 MndHom 𝑌) ↔ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌))))
541, 3, 51, 53syl21anbrc 1343 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {csn 4631  cmpt 5231   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Basecbs 17245  +gcplusg 17298  0gc0g 17486  s cpws 17493  Mndcmnd 18760   MndHom cmhm 18807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809
This theorem is referenced by:  pwsdiagghm  19275  pwsdiagrhm  20624
  Copyright terms: Public domain W3C validator