Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagmhm Structured version   Visualization version   GIF version

Theorem pwsdiagmhm 17722
 Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsdiagmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagmhm.b 𝐵 = (Base‘𝑅)
pwsdiagmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑅 ∈ Mnd)
2 pwsdiagmhm.y . . . 4 𝑌 = (𝑅s 𝐼)
32pwsmnd 17678 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑌 ∈ Mnd)
41, 3jca 507 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd))
5 pwsdiagmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
65fvexi 6447 . . . . . 6 𝐵 ∈ V
7 pwsdiagmhm.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
87fdiagfn 8168 . . . . . 6 ((𝐵 ∈ V ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
96, 8mpan 681 . . . . 5 (𝐼𝑊𝐹:𝐵⟶(𝐵𝑚 𝐼))
109adantl 475 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
112, 5pwsbas 16500 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))
1211feq3d 6265 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(𝐵𝑚 𝐼) ↔ 𝐹:𝐵⟶(Base‘𝑌)))
1310, 12mpbid 224 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(Base‘𝑌))
14 simplr 785 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑊)
15 eqid 2825 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
165, 15mndcl 17654 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
17163expb 1153 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1817adantlr 706 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
197fvdiagfn 8169 . . . . . 6 ((𝐼𝑊 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
2014, 18, 19syl2anc 579 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
217fvdiagfn 8169 . . . . . . . . 9 ((𝐼𝑊𝑎𝐵) → (𝐹𝑎) = (𝐼 × {𝑎}))
227fvdiagfn 8169 . . . . . . . . 9 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2321, 22oveqan12d 6924 . . . . . . . 8 (((𝐼𝑊𝑎𝐵) ∧ (𝐼𝑊𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2423anandis 668 . . . . . . 7 ((𝐼𝑊 ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2524adantll 705 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
26 eqid 2825 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
27 simpll 783 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Mnd)
282, 5, 26pwsdiagel 16510 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑎𝐵) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
2928adantrr 708 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
302, 5, 26pwsdiagel 16510 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
3130adantrl 707 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
32 eqid 2825 . . . . . . 7 (+g𝑌) = (+g𝑌)
332, 26, 27, 14, 29, 31, 15, 32pwsplusgval 16503 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})))
34 id 22 . . . . . . . 8 (𝐼𝑊𝐼𝑊)
35 vex 3417 . . . . . . . . 9 𝑎 ∈ V
3635a1i 11 . . . . . . . 8 (𝐼𝑊𝑎 ∈ V)
37 vex 3417 . . . . . . . . 9 𝑏 ∈ V
3837a1i 11 . . . . . . . 8 (𝐼𝑊𝑏 ∈ V)
3934, 36, 38ofc12 7182 . . . . . . 7 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4039ad2antlr 718 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4125, 33, 403eqtrd 2865 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4220, 41eqtr4d 2864 . . . 4 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
4342ralrimivva 3180 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
44 simpr 479 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐼𝑊)
45 eqid 2825 . . . . . . 7 (0g𝑅) = (0g𝑅)
465, 45mndidcl 17661 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
4746adantr 474 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (0g𝑅) ∈ 𝐵)
487fvdiagfn 8169 . . . . 5 ((𝐼𝑊 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
4944, 47, 48syl2anc 579 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
502, 45pws0g 17679 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × {(0g𝑅)}) = (0g𝑌))
5149, 50eqtrd 2861 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (0g𝑌))
5213, 43, 513jca 1162 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌)))
53 eqid 2825 . . 3 (0g𝑌) = (0g𝑌)
545, 26, 15, 32, 45, 53ismhm 17690 . 2 (𝐹 ∈ (𝑅 MndHom 𝑌) ↔ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌))))
554, 52, 54sylanbrc 578 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164  ∀wral 3117  Vcvv 3414  {csn 4397   ↦ cmpt 4952   × cxp 5340  ⟶wf 6119  ‘cfv 6123  (class class class)co 6905   ∘𝑓 cof 7155   ↑𝑚 cmap 8122  Basecbs 16222  +gcplusg 16305  0gc0g 16453   ↑s cpws 16460  Mndcmnd 17647   MndHom cmhm 17686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318  df-mulr 16319  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-hom 16329  df-cco 16330  df-0g 16455  df-prds 16461  df-pws 16463  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688 This theorem is referenced by:  pwsdiagghm  18039  pwsdiagrhm  19169
 Copyright terms: Public domain W3C validator